Solve for a
a = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
2a+3=2\left(2a-1\right)
Variable a cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(2a-1\right).
2a+3=4a-2
Use the distributive property to multiply 2 by 2a-1.
2a+3-4a=-2
Subtract 4a from both sides.
-2a+3=-2
Combine 2a and -4a to get -2a.
-2a=-2-3
Subtract 3 from both sides.
-2a=-5
Subtract 3 from -2 to get -5.
a=\frac{-5}{-2}
Divide both sides by -2.
a=\frac{5}{2}
Fraction \frac{-5}{-2} can be simplified to \frac{5}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}