Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}. Multiply \frac{1}{a+b} times \frac{a-b}{a-b}.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{a-b}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
Do the multiplications in a+b-\left(a-b\right).
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
Combine like terms in a+b-a+b.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
Multiply \frac{2a+2b}{b} times \frac{2b}{\left(a+b\right)\left(a-b\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
Cancel out b in both numerator and denominator.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{2^{2}}{a-b}
Cancel out a+b in both numerator and denominator.
\frac{4}{a-b}
Expand the expression.
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}. Multiply \frac{1}{a+b} times \frac{a-b}{a-b}.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{a-b}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
Do the multiplications in a+b-\left(a-b\right).
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
Combine like terms in a+b-a+b.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
Multiply \frac{2a+2b}{b} times \frac{2b}{\left(a+b\right)\left(a-b\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
Cancel out b in both numerator and denominator.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{2^{2}}{a-b}
Cancel out a+b in both numerator and denominator.
\frac{4}{a-b}
Expand the expression.