Solve for A_1
A_{1}\neq 0
F_{1}=0\text{ and }A_{2}\neq 0
Solve for A_2
A_{2}\neq 0
F_{1}=0\text{ and }A_{1}\neq 0
Share
Copied to clipboard
2F_{1}=3A_{1}A_{2}^{-1}\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}
Variable A_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A_{1}.
2F_{1}=\frac{3\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}A_{1}A_{2}^{-1}
Express 3\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3} as a single fraction.
2F_{1}=\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}
Cancel out 3 and 3.
\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}=2F_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{A_{2}}A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}
Reorder the terms.
1A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}A_{2}
Multiply both sides of the equation by A_{2}.
A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2A_{2}F_{1}
Reorder the terms.
0=2A_{2}F_{1}
The equation is in standard form.
A_{1}\in
This is false for any A_{1}.
2F_{1}=3A_{1}A_{2}^{-1}\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}
Multiply both sides of the equation by A_{1}.
2F_{1}=\frac{3\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}A_{1}A_{2}^{-1}
Express 3\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3} as a single fraction.
2F_{1}=\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}
Cancel out 3 and 3.
\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}=2F_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{A_{2}}A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}
Reorder the terms.
1A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}A_{2}
Variable A_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A_{2}.
1A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})-2F_{1}A_{2}=0
Subtract 2F_{1}A_{2} from both sides.
A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})-2A_{2}F_{1}=0
Reorder the terms.
\left(A_{1}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})-2F_{1}\right)A_{2}=0
Combine all terms containing A_{2}.
\left(-2F_{1}\right)A_{2}=0
The equation is in standard form.
A_{2}=0
Divide 0 by -2F_{1}.
A_{2}\in \emptyset
Variable A_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}