Skip to main content
Solve for A_1
Tick mark Image
Solve for A_2
Tick mark Image

Similar Problems from Web Search

Share

2F_{1}=3A_{1}A_{2}^{-1}\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}
Variable A_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A_{1}.
2F_{1}=\frac{3\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}A_{1}A_{2}^{-1}
Express 3\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3} as a single fraction.
2F_{1}=\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}
Cancel out 3 and 3.
\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}=2F_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{A_{2}}A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}
Reorder the terms.
1A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}A_{2}
Multiply both sides of the equation by A_{2}.
A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2A_{2}F_{1}
Reorder the terms.
0=2A_{2}F_{1}
The equation is in standard form.
A_{1}\in
This is false for any A_{1}.
2F_{1}=3A_{1}A_{2}^{-1}\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}
Multiply both sides of the equation by A_{1}.
2F_{1}=\frac{3\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3}A_{1}A_{2}^{-1}
Express 3\times \frac{\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}}{3} as a single fraction.
2F_{1}=\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}
Cancel out 3 and 3.
\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})A_{2}A_{1}A_{2}^{-1}=2F_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{A_{2}}A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}
Reorder the terms.
1A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})=2F_{1}A_{2}
Variable A_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A_{2}.
1A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})-2F_{1}A_{2}=0
Subtract 2F_{1}A_{2} from both sides.
A_{1}A_{2}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})-2A_{2}F_{1}=0
Reorder the terms.
\left(A_{1}\frac{\mathrm{d}}{\mathrm{d}x}(F_{2})-2F_{1}\right)A_{2}=0
Combine all terms containing A_{2}.
\left(-2F_{1}\right)A_{2}=0
The equation is in standard form.
A_{2}=0
Divide 0 by -2F_{1}.
A_{2}\in \emptyset
Variable A_{2} cannot be equal to 0.