Evaluate
-\frac{2B\left(B+a\right)}{a\left(a+b\right)}
a\neq 0\text{ and }|a|\neq |b|
Expand
-\frac{2\left(B^{2}+Ba\right)}{a\left(a+b\right)}
a\neq 0\text{ and }|a|\neq |b|
Share
Copied to clipboard
\frac{2B\left(a+B\right)\left(b-a\right)}{a\left(a-b\right)\left(b+a\right)}
Divide \frac{2B\left(a+B\right)}{a\left(a-b\right)} by \frac{b+a}{b-a} by multiplying \frac{2B\left(a+B\right)}{a\left(a-b\right)} by the reciprocal of \frac{b+a}{b-a}.
\frac{-2B\left(B+a\right)\left(a-b\right)}{a\left(a+b\right)\left(a-b\right)}
Extract the negative sign in b-a.
\frac{-2B\left(B+a\right)}{a\left(a+b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-2B^{2}-2Ba}{a\left(a+b\right)}
Use the distributive property to multiply -2B by B+a.
\frac{-2B^{2}-2Ba}{a^{2}+ab}
Use the distributive property to multiply a by a+b.
\frac{2B\left(a+B\right)\left(b-a\right)}{a\left(a-b\right)\left(b+a\right)}
Divide \frac{2B\left(a+B\right)}{a\left(a-b\right)} by \frac{b+a}{b-a} by multiplying \frac{2B\left(a+B\right)}{a\left(a-b\right)} by the reciprocal of \frac{b+a}{b-a}.
\frac{-2B\left(B+a\right)\left(a-b\right)}{a\left(a+b\right)\left(a-b\right)}
Extract the negative sign in b-a.
\frac{-2B\left(B+a\right)}{a\left(a+b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-2B^{2}-2Ba}{a\left(a+b\right)}
Use the distributive property to multiply -2B by B+a.
\frac{-2B^{2}-2Ba}{a^{2}+ab}
Use the distributive property to multiply a by a+b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}