Solve for x
\left\{\begin{matrix}x=y+1\text{, }&y\neq -1\text{ and }y\neq 0\\x\in \mathrm{R}\text{, }&y=2\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=2\text{, }&\text{unconditionally}\\y=x-1\text{, }&x\neq 0\text{ and }x\neq 1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(y+1\right)\left(2-y\right)=\left(2-y\right)x
Multiply both sides of the equation by y\left(y+1\right), the least common multiple of y,y^{2}+y.
y-y^{2}+2=\left(2-y\right)x
Use the distributive property to multiply y+1 by 2-y and combine like terms.
y-y^{2}+2=2x-yx
Use the distributive property to multiply 2-y by x.
2x-yx=y-y^{2}+2
Swap sides so that all variable terms are on the left hand side.
\left(2-y\right)x=y-y^{2}+2
Combine all terms containing x.
\left(2-y\right)x=2+y-y^{2}
The equation is in standard form.
\frac{\left(2-y\right)x}{2-y}=-\frac{\left(y-2\right)\left(y+1\right)}{2-y}
Divide both sides by 2-y.
x=-\frac{\left(y-2\right)\left(y+1\right)}{2-y}
Dividing by 2-y undoes the multiplication by 2-y.
x=y+1
Divide -\left(-2+y\right)\left(1+y\right) by 2-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}