Evaluate
\frac{-25x^{3}+60x^{2}+748x-576}{x\left(x-7\right)\left(x+8\right)\left(x^{2}-36\right)}
Expand
\frac{-25x^{3}+60x^{2}+748x-576}{\left(x+8\right)\left(x^{2}-36\right)\left(x^{2}-7x\right)}
Graph
Share
Copied to clipboard
\frac{2-x}{x\left(x-7\right)}+\frac{3}{x+8}-\frac{2x-4}{x^{2}-36}
Factor x^{2}-7x.
\frac{\left(2-x\right)\left(x+8\right)}{x\left(x-7\right)\left(x+8\right)}+\frac{3x\left(x-7\right)}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-7\right) and x+8 is x\left(x-7\right)\left(x+8\right). Multiply \frac{2-x}{x\left(x-7\right)} times \frac{x+8}{x+8}. Multiply \frac{3}{x+8} times \frac{x\left(x-7\right)}{x\left(x-7\right)}.
\frac{\left(2-x\right)\left(x+8\right)+3x\left(x-7\right)}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
Since \frac{\left(2-x\right)\left(x+8\right)}{x\left(x-7\right)\left(x+8\right)} and \frac{3x\left(x-7\right)}{x\left(x-7\right)\left(x+8\right)} have the same denominator, add them by adding their numerators.
\frac{2x+16-x^{2}-8x+3x^{2}-21x}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
Do the multiplications in \left(2-x\right)\left(x+8\right)+3x\left(x-7\right).
\frac{-27x+16+2x^{2}}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
Combine like terms in 2x+16-x^{2}-8x+3x^{2}-21x.
\frac{-27x+16+2x^{2}}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{\left(x-6\right)\left(x+6\right)}
Factor x^{2}-36.
\frac{\left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}-\frac{\left(2x-4\right)x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-7\right)\left(x+8\right) and \left(x-6\right)\left(x+6\right) is x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right). Multiply \frac{-27x+16+2x^{2}}{x\left(x-7\right)\left(x+8\right)} times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}. Multiply \frac{2x-4}{\left(x-6\right)\left(x+6\right)} times \frac{x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x+8\right)}.
\frac{\left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)-\left(2x-4\right)x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
Since \frac{\left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)} and \frac{\left(2x-4\right)x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-27x^{3}+972x+16x^{2}-576+2x^{4}-72x^{2}-2x^{4}-2x^{3}+112x^{2}+4x^{3}+4x^{2}-224x}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
Do the multiplications in \left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)-\left(2x-4\right)x\left(x-7\right)\left(x+8\right).
\frac{-25x^{3}+748x+60x^{2}-576}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
Combine like terms in -27x^{3}+972x+16x^{2}-576+2x^{4}-72x^{2}-2x^{4}-2x^{3}+112x^{2}+4x^{3}+4x^{2}-224x.
\frac{-25x^{3}+748x+60x^{2}-576}{x^{5}+x^{4}-92x^{3}-36x^{2}+2016x}
Expand x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right).
\frac{2-x}{x\left(x-7\right)}+\frac{3}{x+8}-\frac{2x-4}{x^{2}-36}
Factor x^{2}-7x.
\frac{\left(2-x\right)\left(x+8\right)}{x\left(x-7\right)\left(x+8\right)}+\frac{3x\left(x-7\right)}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-7\right) and x+8 is x\left(x-7\right)\left(x+8\right). Multiply \frac{2-x}{x\left(x-7\right)} times \frac{x+8}{x+8}. Multiply \frac{3}{x+8} times \frac{x\left(x-7\right)}{x\left(x-7\right)}.
\frac{\left(2-x\right)\left(x+8\right)+3x\left(x-7\right)}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
Since \frac{\left(2-x\right)\left(x+8\right)}{x\left(x-7\right)\left(x+8\right)} and \frac{3x\left(x-7\right)}{x\left(x-7\right)\left(x+8\right)} have the same denominator, add them by adding their numerators.
\frac{2x+16-x^{2}-8x+3x^{2}-21x}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
Do the multiplications in \left(2-x\right)\left(x+8\right)+3x\left(x-7\right).
\frac{-27x+16+2x^{2}}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{x^{2}-36}
Combine like terms in 2x+16-x^{2}-8x+3x^{2}-21x.
\frac{-27x+16+2x^{2}}{x\left(x-7\right)\left(x+8\right)}-\frac{2x-4}{\left(x-6\right)\left(x+6\right)}
Factor x^{2}-36.
\frac{\left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}-\frac{\left(2x-4\right)x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-7\right)\left(x+8\right) and \left(x-6\right)\left(x+6\right) is x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right). Multiply \frac{-27x+16+2x^{2}}{x\left(x-7\right)\left(x+8\right)} times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}. Multiply \frac{2x-4}{\left(x-6\right)\left(x+6\right)} times \frac{x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x+8\right)}.
\frac{\left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)-\left(2x-4\right)x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
Since \frac{\left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)} and \frac{\left(2x-4\right)x\left(x-7\right)\left(x+8\right)}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-27x^{3}+972x+16x^{2}-576+2x^{4}-72x^{2}-2x^{4}-2x^{3}+112x^{2}+4x^{3}+4x^{2}-224x}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
Do the multiplications in \left(-27x+16+2x^{2}\right)\left(x-6\right)\left(x+6\right)-\left(2x-4\right)x\left(x-7\right)\left(x+8\right).
\frac{-25x^{3}+748x+60x^{2}-576}{x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right)}
Combine like terms in -27x^{3}+972x+16x^{2}-576+2x^{4}-72x^{2}-2x^{4}-2x^{3}+112x^{2}+4x^{3}+4x^{2}-224x.
\frac{-25x^{3}+748x+60x^{2}-576}{x^{5}+x^{4}-92x^{3}-36x^{2}+2016x}
Expand x\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+8\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}