Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2-x}{\left(x-4\right)\left(x+2\right)}+\frac{x+4}{3\left(x+2\right)}
Factor x^{2}-2x-8. Factor 3x+6.
\frac{3\left(2-x\right)}{3\left(x-4\right)\left(x+2\right)}+\frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right) and 3\left(x+2\right) is 3\left(x-4\right)\left(x+2\right). Multiply \frac{2-x}{\left(x-4\right)\left(x+2\right)} times \frac{3}{3}. Multiply \frac{x+4}{3\left(x+2\right)} times \frac{x-4}{x-4}.
\frac{3\left(2-x\right)+\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)\left(x+2\right)}
Since \frac{3\left(2-x\right)}{3\left(x-4\right)\left(x+2\right)} and \frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{6-3x+x^{2}-4x+4x-16}{3\left(x-4\right)\left(x+2\right)}
Do the multiplications in 3\left(2-x\right)+\left(x+4\right)\left(x-4\right).
\frac{-10-3x+x^{2}}{3\left(x-4\right)\left(x+2\right)}
Combine like terms in 6-3x+x^{2}-4x+4x-16.
\frac{\left(x-5\right)\left(x+2\right)}{3\left(x-4\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{-10-3x+x^{2}}{3\left(x-4\right)\left(x+2\right)}.
\frac{x-5}{3\left(x-4\right)}
Cancel out x+2 in both numerator and denominator.
\frac{x-5}{3x-12}
Expand 3\left(x-4\right).
\frac{2-x}{\left(x-4\right)\left(x+2\right)}+\frac{x+4}{3\left(x+2\right)}
Factor x^{2}-2x-8. Factor 3x+6.
\frac{3\left(2-x\right)}{3\left(x-4\right)\left(x+2\right)}+\frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right) and 3\left(x+2\right) is 3\left(x-4\right)\left(x+2\right). Multiply \frac{2-x}{\left(x-4\right)\left(x+2\right)} times \frac{3}{3}. Multiply \frac{x+4}{3\left(x+2\right)} times \frac{x-4}{x-4}.
\frac{3\left(2-x\right)+\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)\left(x+2\right)}
Since \frac{3\left(2-x\right)}{3\left(x-4\right)\left(x+2\right)} and \frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{6-3x+x^{2}-4x+4x-16}{3\left(x-4\right)\left(x+2\right)}
Do the multiplications in 3\left(2-x\right)+\left(x+4\right)\left(x-4\right).
\frac{-10-3x+x^{2}}{3\left(x-4\right)\left(x+2\right)}
Combine like terms in 6-3x+x^{2}-4x+4x-16.
\frac{\left(x-5\right)\left(x+2\right)}{3\left(x-4\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{-10-3x+x^{2}}{3\left(x-4\right)\left(x+2\right)}.
\frac{x-5}{3\left(x-4\right)}
Cancel out x+2 in both numerator and denominator.
\frac{x-5}{3x-12}
Expand 3\left(x-4\right).