Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}\times \frac{9-x}{4-2}
Divide \frac{2-x}{x^{2}+x} by \frac{x^{2}-3x}{x^{2}+2x+1} by multiplying \frac{2-x}{x^{2}+x} by the reciprocal of \frac{x^{2}-3x}{x^{2}+2x+1}.
\frac{\left(-x+2\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x+1\right)x^{2}}\times \frac{9-x}{4-2}
Factor the expressions that are not already factored in \frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}.
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}}\times \frac{9-x}{4-2}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}}\times \frac{9-x}{2}
Subtract 2 from 4 to get 2.
\frac{\left(x+1\right)\left(-x+2\right)\left(9-x\right)}{\left(x-3\right)x^{2}\times 2}
Multiply \frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}} times \frac{9-x}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-x^{2}+x+2\right)\left(9-x\right)}{\left(x-3\right)x^{2}\times 2}
Use the distributive property to multiply x+1 by -x+2 and combine like terms.
\frac{-10x^{2}+x^{3}+7x+18}{\left(x-3\right)x^{2}\times 2}
Use the distributive property to multiply -x^{2}+x+2 by 9-x and combine like terms.
\frac{-10x^{2}+x^{3}+7x+18}{\left(x^{3}-3x^{2}\right)\times 2}
Use the distributive property to multiply x-3 by x^{2}.
\frac{-10x^{2}+x^{3}+7x+18}{2x^{3}-6x^{2}}
Use the distributive property to multiply x^{3}-3x^{2} by 2.
\frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}\times \frac{9-x}{4-2}
Divide \frac{2-x}{x^{2}+x} by \frac{x^{2}-3x}{x^{2}+2x+1} by multiplying \frac{2-x}{x^{2}+x} by the reciprocal of \frac{x^{2}-3x}{x^{2}+2x+1}.
\frac{\left(-x+2\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x+1\right)x^{2}}\times \frac{9-x}{4-2}
Factor the expressions that are not already factored in \frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}.
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}}\times \frac{9-x}{4-2}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}}\times \frac{9-x}{2}
Subtract 2 from 4 to get 2.
\frac{\left(x+1\right)\left(-x+2\right)\left(9-x\right)}{\left(x-3\right)x^{2}\times 2}
Multiply \frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}} times \frac{9-x}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-x^{2}+x+2\right)\left(9-x\right)}{\left(x-3\right)x^{2}\times 2}
Use the distributive property to multiply x+1 by -x+2 and combine like terms.
\frac{-10x^{2}+x^{3}+7x+18}{\left(x-3\right)x^{2}\times 2}
Use the distributive property to multiply -x^{2}+x+2 by 9-x and combine like terms.
\frac{-10x^{2}+x^{3}+7x+18}{\left(x^{3}-3x^{2}\right)\times 2}
Use the distributive property to multiply x-3 by x^{2}.
\frac{-10x^{2}+x^{3}+7x+18}{2x^{3}-6x^{2}}
Use the distributive property to multiply x^{3}-3x^{2} by 2.