Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}\times \frac{9-x^{2}}{4-2x}
Divide \frac{2-x}{x^{2}+x} by \frac{x^{2}-3x}{x^{2}+2x+1} by multiplying \frac{2-x}{x^{2}+x} by the reciprocal of \frac{x^{2}-3x}{x^{2}+2x+1}.
\frac{\left(-x+2\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x+1\right)x^{2}}\times \frac{9-x^{2}}{4-2x}
Factor the expressions that are not already factored in \frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}.
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}}\times \frac{9-x^{2}}{4-2x}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)\left(-x+2\right)\left(9-x^{2}\right)}{\left(x-3\right)x^{2}\left(4-2x\right)}
Multiply \frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}} times \frac{9-x^{2}}{4-2x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(-x-3\right)\left(x+1\right)\left(-x+2\right)}{2\left(x-3\right)\left(-x+2\right)x^{2}}
Factor the expressions that are not already factored.
\frac{\left(-x-3\right)\left(x+1\right)}{2x^{2}}
Cancel out \left(x-3\right)\left(-x+2\right) in both numerator and denominator.
\frac{-x^{2}-4x-3}{2x^{2}}
Expand the expression.
\frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}\times \frac{9-x^{2}}{4-2x}
Divide \frac{2-x}{x^{2}+x} by \frac{x^{2}-3x}{x^{2}+2x+1} by multiplying \frac{2-x}{x^{2}+x} by the reciprocal of \frac{x^{2}-3x}{x^{2}+2x+1}.
\frac{\left(-x+2\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x+1\right)x^{2}}\times \frac{9-x^{2}}{4-2x}
Factor the expressions that are not already factored in \frac{\left(2-x\right)\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)\left(x^{2}-3x\right)}.
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}}\times \frac{9-x^{2}}{4-2x}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)\left(-x+2\right)\left(9-x^{2}\right)}{\left(x-3\right)x^{2}\left(4-2x\right)}
Multiply \frac{\left(x+1\right)\left(-x+2\right)}{\left(x-3\right)x^{2}} times \frac{9-x^{2}}{4-2x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(-x-3\right)\left(x+1\right)\left(-x+2\right)}{2\left(x-3\right)\left(-x+2\right)x^{2}}
Factor the expressions that are not already factored.
\frac{\left(-x-3\right)\left(x+1\right)}{2x^{2}}
Cancel out \left(x-3\right)\left(-x+2\right) in both numerator and denominator.
\frac{-x^{2}-4x-3}{2x^{2}}
Expand the expression.