Evaluate
\frac{2\left(4-x^{2}\right)}{x\left(10x+19\right)}
Expand
-\frac{2\left(x^{2}-4\right)}{10x^{2}+19x}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 2 - x } { 5 x - \frac { 1 } { 2 + \frac { 4 } { x } } }
Share
Copied to clipboard
\frac{2-x}{5x-\frac{1}{\frac{2x}{x}+\frac{4}{x}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{2-x}{5x-\frac{1}{\frac{2x+4}{x}}}
Since \frac{2x}{x} and \frac{4}{x} have the same denominator, add them by adding their numerators.
\frac{2-x}{5x-\frac{x}{2x+4}}
Divide 1 by \frac{2x+4}{x} by multiplying 1 by the reciprocal of \frac{2x+4}{x}.
\frac{2-x}{5x-\frac{x}{2\left(x+2\right)}}
Factor 2x+4.
\frac{2-x}{\frac{5x\times 2\left(x+2\right)}{2\left(x+2\right)}-\frac{x}{2\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5x times \frac{2\left(x+2\right)}{2\left(x+2\right)}.
\frac{2-x}{\frac{5x\times 2\left(x+2\right)-x}{2\left(x+2\right)}}
Since \frac{5x\times 2\left(x+2\right)}{2\left(x+2\right)} and \frac{x}{2\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2-x}{\frac{10x^{2}+20x-x}{2\left(x+2\right)}}
Do the multiplications in 5x\times 2\left(x+2\right)-x.
\frac{2-x}{\frac{10x^{2}+19x}{2\left(x+2\right)}}
Combine like terms in 10x^{2}+20x-x.
\frac{\left(2-x\right)\times 2\left(x+2\right)}{10x^{2}+19x}
Divide 2-x by \frac{10x^{2}+19x}{2\left(x+2\right)} by multiplying 2-x by the reciprocal of \frac{10x^{2}+19x}{2\left(x+2\right)}.
\frac{\left(4-2x\right)\left(x+2\right)}{10x^{2}+19x}
Use the distributive property to multiply 2-x by 2.
\frac{4x+8-2x^{2}-4x}{10x^{2}+19x}
Apply the distributive property by multiplying each term of 4-2x by each term of x+2.
\frac{8-2x^{2}}{10x^{2}+19x}
Combine 4x and -4x to get 0.
\frac{2-x}{5x-\frac{1}{\frac{2x}{x}+\frac{4}{x}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{2-x}{5x-\frac{1}{\frac{2x+4}{x}}}
Since \frac{2x}{x} and \frac{4}{x} have the same denominator, add them by adding their numerators.
\frac{2-x}{5x-\frac{x}{2x+4}}
Divide 1 by \frac{2x+4}{x} by multiplying 1 by the reciprocal of \frac{2x+4}{x}.
\frac{2-x}{5x-\frac{x}{2\left(x+2\right)}}
Factor 2x+4.
\frac{2-x}{\frac{5x\times 2\left(x+2\right)}{2\left(x+2\right)}-\frac{x}{2\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5x times \frac{2\left(x+2\right)}{2\left(x+2\right)}.
\frac{2-x}{\frac{5x\times 2\left(x+2\right)-x}{2\left(x+2\right)}}
Since \frac{5x\times 2\left(x+2\right)}{2\left(x+2\right)} and \frac{x}{2\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2-x}{\frac{10x^{2}+20x-x}{2\left(x+2\right)}}
Do the multiplications in 5x\times 2\left(x+2\right)-x.
\frac{2-x}{\frac{10x^{2}+19x}{2\left(x+2\right)}}
Combine like terms in 10x^{2}+20x-x.
\frac{\left(2-x\right)\times 2\left(x+2\right)}{10x^{2}+19x}
Divide 2-x by \frac{10x^{2}+19x}{2\left(x+2\right)} by multiplying 2-x by the reciprocal of \frac{10x^{2}+19x}{2\left(x+2\right)}.
\frac{\left(4-2x\right)\left(x+2\right)}{10x^{2}+19x}
Use the distributive property to multiply 2-x by 2.
\frac{4x+8-2x^{2}-4x}{10x^{2}+19x}
Apply the distributive property by multiplying each term of 4-2x by each term of x+2.
\frac{8-2x^{2}}{10x^{2}+19x}
Combine 4x and -4x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}