Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
2\left(2-x\right)+1-x=3\left(4x-5\right)
Multiply both sides of the equation by 6, the least common multiple of 3,6,2.
4-2x+1-x=3\left(4x-5\right)
Use the distributive property to multiply 2 by 2-x.
5-2x-x=3\left(4x-5\right)
Add 4 and 1 to get 5.
5-3x=3\left(4x-5\right)
Combine -2x and -x to get -3x.
5-3x=12x-15
Use the distributive property to multiply 3 by 4x-5.
5-3x-12x=-15
Subtract 12x from both sides.
5-15x=-15
Combine -3x and -12x to get -15x.
-15x=-15-5
Subtract 5 from both sides.
-15x=-20
Subtract 5 from -15 to get -20.
x=\frac{-20}{-15}
Divide both sides by -15.
x=\frac{4}{3}
Reduce the fraction \frac{-20}{-15} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}