Solve for n
n = \frac{23}{7} = 3\frac{2}{7} \approx 3.285714286
Share
Copied to clipboard
2\left(2-n\right)=-9\left(n-3\right)
Variable n cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 2\left(n-3\right), the least common multiple of n-3,2.
4-2n=-9\left(n-3\right)
Use the distributive property to multiply 2 by 2-n.
4-2n=-9n+27
Use the distributive property to multiply -9 by n-3.
4-2n+9n=27
Add 9n to both sides.
4+7n=27
Combine -2n and 9n to get 7n.
7n=27-4
Subtract 4 from both sides.
7n=23
Subtract 4 from 27 to get 23.
n=\frac{23}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}