Solve for k
k=\frac{-\sqrt{59}i-1}{10}\approx -0.1-0.768114575i
k=\frac{-1+\sqrt{59}i}{10}\approx -0.1+0.768114575i
Share
Copied to clipboard
2-k=5\left(k-i\right)\left(k+i\right)
Variable k cannot be equal to any of the values -i,i since division by zero is not defined. Multiply both sides of the equation by \left(k-i\right)\left(k+i\right).
2-k=\left(5k-5i\right)\left(k+i\right)
Use the distributive property to multiply 5 by k-i.
2-k=5k^{2}+5
Use the distributive property to multiply 5k-5i by k+i and combine like terms.
2-k-5k^{2}=5
Subtract 5k^{2} from both sides.
2-k-5k^{2}-5=0
Subtract 5 from both sides.
-3-k-5k^{2}=0
Subtract 5 from 2 to get -3.
-5k^{2}-k-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-1\right)±\sqrt{1-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -1 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-1\right)±\sqrt{1+20\left(-3\right)}}{2\left(-5\right)}
Multiply -4 times -5.
k=\frac{-\left(-1\right)±\sqrt{1-60}}{2\left(-5\right)}
Multiply 20 times -3.
k=\frac{-\left(-1\right)±\sqrt{-59}}{2\left(-5\right)}
Add 1 to -60.
k=\frac{-\left(-1\right)±\sqrt{59}i}{2\left(-5\right)}
Take the square root of -59.
k=\frac{1±\sqrt{59}i}{2\left(-5\right)}
The opposite of -1 is 1.
k=\frac{1±\sqrt{59}i}{-10}
Multiply 2 times -5.
k=\frac{1+\sqrt{59}i}{-10}
Now solve the equation k=\frac{1±\sqrt{59}i}{-10} when ± is plus. Add 1 to i\sqrt{59}.
k=\frac{-\sqrt{59}i-1}{10}
Divide 1+i\sqrt{59} by -10.
k=\frac{-\sqrt{59}i+1}{-10}
Now solve the equation k=\frac{1±\sqrt{59}i}{-10} when ± is minus. Subtract i\sqrt{59} from 1.
k=\frac{-1+\sqrt{59}i}{10}
Divide 1-i\sqrt{59} by -10.
k=\frac{-\sqrt{59}i-1}{10} k=\frac{-1+\sqrt{59}i}{10}
The equation is now solved.
2-k=5\left(k-i\right)\left(k+i\right)
Variable k cannot be equal to any of the values -i,i since division by zero is not defined. Multiply both sides of the equation by \left(k-i\right)\left(k+i\right).
2-k=\left(5k-5i\right)\left(k+i\right)
Use the distributive property to multiply 5 by k-i.
2-k=5k^{2}+5
Use the distributive property to multiply 5k-5i by k+i and combine like terms.
2-k-5k^{2}=5
Subtract 5k^{2} from both sides.
-k-5k^{2}=5-2
Subtract 2 from both sides.
-k-5k^{2}=3
Subtract 2 from 5 to get 3.
-5k^{2}-k=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5k^{2}-k}{-5}=\frac{3}{-5}
Divide both sides by -5.
k^{2}+\left(-\frac{1}{-5}\right)k=\frac{3}{-5}
Dividing by -5 undoes the multiplication by -5.
k^{2}+\frac{1}{5}k=\frac{3}{-5}
Divide -1 by -5.
k^{2}+\frac{1}{5}k=-\frac{3}{5}
Divide 3 by -5.
k^{2}+\frac{1}{5}k+\left(\frac{1}{10}\right)^{2}=-\frac{3}{5}+\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{1}{5}k+\frac{1}{100}=-\frac{3}{5}+\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{1}{5}k+\frac{1}{100}=-\frac{59}{100}
Add -\frac{3}{5} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{1}{10}\right)^{2}=-\frac{59}{100}
Factor k^{2}+\frac{1}{5}k+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{1}{10}\right)^{2}}=\sqrt{-\frac{59}{100}}
Take the square root of both sides of the equation.
k+\frac{1}{10}=\frac{\sqrt{59}i}{10} k+\frac{1}{10}=-\frac{\sqrt{59}i}{10}
Simplify.
k=\frac{-1+\sqrt{59}i}{10} k=\frac{-\sqrt{59}i-1}{10}
Subtract \frac{1}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}