Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(2-i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 1+2\left(-i\right)-i-\left(-i^{2}\right)}{2}
Multiply complex numbers 2-i and 1-i like you multiply binomials.
\frac{2\times 1+2\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}
By definition, i^{2} is -1.
\frac{2-2i-i-1}{2}
Do the multiplications in 2\times 1+2\left(-i\right)-i-\left(-\left(-1\right)\right).
\frac{2-1+\left(-2-1\right)i}{2}
Combine the real and imaginary parts in 2-2i-i-1.
\frac{1-3i}{2}
Do the additions in 2-1+\left(-2-1\right)i.
\frac{1}{2}-\frac{3}{2}i
Divide 1-3i by 2 to get \frac{1}{2}-\frac{3}{2}i.
Re(\frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(2-i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 1+2\left(-i\right)-i-\left(-i^{2}\right)}{2})
Multiply complex numbers 2-i and 1-i like you multiply binomials.
Re(\frac{2\times 1+2\left(-i\right)-i-\left(-\left(-1\right)\right)}{2})
By definition, i^{2} is -1.
Re(\frac{2-2i-i-1}{2})
Do the multiplications in 2\times 1+2\left(-i\right)-i-\left(-\left(-1\right)\right).
Re(\frac{2-1+\left(-2-1\right)i}{2})
Combine the real and imaginary parts in 2-2i-i-1.
Re(\frac{1-3i}{2})
Do the additions in 2-1+\left(-2-1\right)i.
Re(\frac{1}{2}-\frac{3}{2}i)
Divide 1-3i by 2 to get \frac{1}{2}-\frac{3}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}-\frac{3}{2}i is \frac{1}{2}.