Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{\left(-\sqrt{3}+i\right)\left(-\sqrt{3}-i\right)}
Rationalize the denominator of \frac{2-i\sqrt{3}}{-\sqrt{3}+i} by multiplying numerator and denominator by -\sqrt{3}-i.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{\left(-\sqrt{3}\right)^{2}-i^{2}}
Consider \left(-\sqrt{3}+i\right)\left(-\sqrt{3}-i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{\left(\sqrt{3}\right)^{2}-i^{2}}
Calculate -\sqrt{3} to the power of 2 and get \left(\sqrt{3}\right)^{2}.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{\left(\sqrt{3}\right)^{2}-\left(-1\right)}
Calculate i to the power of 2 and get -1.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{\left(\sqrt{3}\right)^{2}+1}
Multiply -1 and -1 to get 1.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{3+1}
The square of \sqrt{3} is 3.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}-i\right)}{4}
Add 3 and 1 to get 4.
\frac{\left(2-i\sqrt{3}\right)\left(-\sqrt{3}\right)-i\left(2-i\sqrt{3}\right)}{4}
Use the distributive property to multiply 2-i\sqrt{3} by -\sqrt{3}-i.
\frac{\left(-2+i\sqrt{3}\right)\sqrt{3}-i\left(2-i\sqrt{3}\right)}{4}
Use the distributive property to multiply 2-i\sqrt{3} by -1.
\frac{-2\sqrt{3}+i\left(\sqrt{3}\right)^{2}-i\left(2-i\sqrt{3}\right)}{4}
Use the distributive property to multiply -2+i\sqrt{3} by \sqrt{3}.
\frac{-2\sqrt{3}+3i-i\left(2-i\sqrt{3}\right)}{4}
The square of \sqrt{3} is 3.
\frac{-2\sqrt{3}+3i-2i-\sqrt{3}}{4}
Use the distributive property to multiply -i by 2-i\sqrt{3}.
\frac{-2\sqrt{3}+i-\sqrt{3}}{4}
Subtract 2i from 3i to get i.
\frac{-3\sqrt{3}+i}{4}
Combine -2\sqrt{3} and -\sqrt{3} to get -3\sqrt{3}.