Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-i\sqrt{3}\right)\left(\sqrt{3}-i\right)}{\left(\sqrt{3}+i\right)\left(\sqrt{3}-i\right)}
Rationalize the denominator of \frac{2-i\sqrt{3}}{\sqrt{3}+i} by multiplying numerator and denominator by \sqrt{3}-i.
\frac{\left(2-i\sqrt{3}\right)\left(\sqrt{3}-i\right)}{\left(\sqrt{3}\right)^{2}-i^{2}}
Consider \left(\sqrt{3}+i\right)\left(\sqrt{3}-i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\sqrt{3}\right)\left(\sqrt{3}-i\right)}{3+1}
Square \sqrt{3}. Square i.
\frac{\left(2-i\sqrt{3}\right)\left(\sqrt{3}-i\right)}{4}
Subtract -1 from 3 to get 4.
\frac{\left(2-i\sqrt{3}\right)\sqrt{3}-i\left(2-i\sqrt{3}\right)}{4}
Use the distributive property to multiply 2-i\sqrt{3} by \sqrt{3}-i.
\frac{2\sqrt{3}-i\left(\sqrt{3}\right)^{2}-i\left(2-i\sqrt{3}\right)}{4}
Use the distributive property to multiply 2-i\sqrt{3} by \sqrt{3}.
\frac{2\sqrt{3}-i\times 3-i\left(2-i\sqrt{3}\right)}{4}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}-3i-i\left(2-i\sqrt{3}\right)}{4}
Multiply -i and 3 to get -3i.
\frac{2\sqrt{3}-3i-2i-\sqrt{3}}{4}
Use the distributive property to multiply -i by 2-i\sqrt{3}.
\frac{2\sqrt{3}-5i-\sqrt{3}}{4}
Subtract 2i from -3i to get -5i.
\frac{\sqrt{3}-5i}{4}
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.