Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-a\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{2a\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and 2-a is \left(a+2\right)\left(-a+2\right). Multiply \frac{2-a}{a+2} times \frac{-a+2}{-a+2}. Multiply \frac{2a}{2-a} times \frac{a+2}{a+2}.
\frac{\left(2-a\right)\left(-a+2\right)+2a\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
Since \frac{\left(2-a\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)} and \frac{2a\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)} have the same denominator, add them by adding their numerators.
\frac{-2a+4+a^{2}-2a+2a^{2}+4a}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
Do the multiplications in \left(2-a\right)\left(-a+2\right)+2a\left(a+2\right).
\frac{4+3a^{2}}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
Combine like terms in -2a+4+a^{2}-2a+2a^{2}+4a.
\frac{4+3a^{2}}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{\left(a-2\right)\left(a+2\right)}
Factor a^{2}-4.
\frac{-\left(4+3a^{2}\right)}{\left(a-2\right)\left(a+2\right)}+\frac{4a^{2}}{\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)\left(-a+2\right) and \left(a-2\right)\left(a+2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{4+3a^{2}}{\left(a+2\right)\left(-a+2\right)} times \frac{-1}{-1}.
\frac{-\left(4+3a^{2}\right)+4a^{2}}{\left(a-2\right)\left(a+2\right)}
Since \frac{-\left(4+3a^{2}\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4a^{2}}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{-4-3a^{2}+4a^{2}}{\left(a-2\right)\left(a+2\right)}
Do the multiplications in -\left(4+3a^{2}\right)+4a^{2}.
\frac{-4+a^{2}}{\left(a-2\right)\left(a+2\right)}
Combine like terms in -4-3a^{2}+4a^{2}.
\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{-4+a^{2}}{\left(a-2\right)\left(a+2\right)}.
1
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.