Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\left(2-a\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{2a\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and 2-a is \left(a+2\right)\left(-a+2\right). Multiply \frac{2-a}{a+2} times \frac{-a+2}{-a+2}. Multiply \frac{2a}{2-a} times \frac{a+2}{a+2}.
\frac{\left(2-a\right)\left(-a+2\right)+2a\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
Since \frac{\left(2-a\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)} and \frac{2a\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)} have the same denominator, add them by adding their numerators.
\frac{-2a+4+a^{2}-2a+2a^{2}+4a}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
Do the multiplications in \left(2-a\right)\left(-a+2\right)+2a\left(a+2\right).
\frac{4+3a^{2}}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{a^{2}-4}
Combine like terms in -2a+4+a^{2}-2a+2a^{2}+4a.
\frac{4+3a^{2}}{\left(a+2\right)\left(-a+2\right)}+\frac{4a^{2}}{\left(a-2\right)\left(a+2\right)}
Factor a^{2}-4.
\frac{-\left(4+3a^{2}\right)}{\left(a-2\right)\left(a+2\right)}+\frac{4a^{2}}{\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)\left(-a+2\right) and \left(a-2\right)\left(a+2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{4+3a^{2}}{\left(a+2\right)\left(-a+2\right)} times \frac{-1}{-1}.
\frac{-\left(4+3a^{2}\right)+4a^{2}}{\left(a-2\right)\left(a+2\right)}
Since \frac{-\left(4+3a^{2}\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4a^{2}}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{-4-3a^{2}+4a^{2}}{\left(a-2\right)\left(a+2\right)}
Do the multiplications in -\left(4+3a^{2}\right)+4a^{2}.
\frac{-4+a^{2}}{\left(a-2\right)\left(a+2\right)}
Combine like terms in -4-3a^{2}+4a^{2}.
\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{-4+a^{2}}{\left(a-2\right)\left(a+2\right)}.
1
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}