Evaluate
-\frac{38}{65}-\frac{21}{65}i\approx -0.584615385-0.323076923i
Real Part
-\frac{38}{65} = -0.5846153846153846
Share
Copied to clipboard
\frac{2-5i}{1+8i}\times 1
Divide 1-8i by 1-8i to get 1.
\frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}\times 1
Multiply both numerator and denominator of \frac{2-5i}{1+8i} by the complex conjugate of the denominator, 1-8i.
\frac{-38-21i}{65}\times 1
Do the multiplications in \frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}.
\left(-\frac{38}{65}-\frac{21}{65}i\right)\times 1
Divide -38-21i by 65 to get -\frac{38}{65}-\frac{21}{65}i.
-\frac{38}{65}-\frac{21}{65}i
Multiply -\frac{38}{65}-\frac{21}{65}i and 1 to get -\frac{38}{65}-\frac{21}{65}i.
Re(\frac{2-5i}{1+8i}\times 1)
Divide 1-8i by 1-8i to get 1.
Re(\frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}\times 1)
Multiply both numerator and denominator of \frac{2-5i}{1+8i} by the complex conjugate of the denominator, 1-8i.
Re(\frac{-38-21i}{65}\times 1)
Do the multiplications in \frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}.
Re(\left(-\frac{38}{65}-\frac{21}{65}i\right)\times 1)
Divide -38-21i by 65 to get -\frac{38}{65}-\frac{21}{65}i.
Re(-\frac{38}{65}-\frac{21}{65}i)
Multiply -\frac{38}{65}-\frac{21}{65}i and 1 to get -\frac{38}{65}-\frac{21}{65}i.
-\frac{38}{65}
The real part of -\frac{38}{65}-\frac{21}{65}i is -\frac{38}{65}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}