Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-5i}{1+8i}\times 1
Divide 1-8i by 1-8i to get 1.
\frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}\times 1
Multiply both numerator and denominator of \frac{2-5i}{1+8i} by the complex conjugate of the denominator, 1-8i.
\frac{-38-21i}{65}\times 1
Do the multiplications in \frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}.
\left(-\frac{38}{65}-\frac{21}{65}i\right)\times 1
Divide -38-21i by 65 to get -\frac{38}{65}-\frac{21}{65}i.
-\frac{38}{65}-\frac{21}{65}i
Multiply -\frac{38}{65}-\frac{21}{65}i and 1 to get -\frac{38}{65}-\frac{21}{65}i.
Re(\frac{2-5i}{1+8i}\times 1)
Divide 1-8i by 1-8i to get 1.
Re(\frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}\times 1)
Multiply both numerator and denominator of \frac{2-5i}{1+8i} by the complex conjugate of the denominator, 1-8i.
Re(\frac{-38-21i}{65}\times 1)
Do the multiplications in \frac{\left(2-5i\right)\left(1-8i\right)}{\left(1+8i\right)\left(1-8i\right)}.
Re(\left(-\frac{38}{65}-\frac{21}{65}i\right)\times 1)
Divide -38-21i by 65 to get -\frac{38}{65}-\frac{21}{65}i.
Re(-\frac{38}{65}-\frac{21}{65}i)
Multiply -\frac{38}{65}-\frac{21}{65}i and 1 to get -\frac{38}{65}-\frac{21}{65}i.
-\frac{38}{65}
The real part of -\frac{38}{65}-\frac{21}{65}i is -\frac{38}{65}.