Solve for z
z=\frac{1}{2}=0.5
Share
Copied to clipboard
\frac{-3}{2+8}=\frac{z-5}{2+13}
Subtract 5 from 2 to get -3.
\frac{-3}{10}=\frac{z-5}{2+13}
Add 2 and 8 to get 10.
-\frac{3}{10}=\frac{z-5}{2+13}
Fraction \frac{-3}{10} can be rewritten as -\frac{3}{10} by extracting the negative sign.
-\frac{3}{10}=\frac{z-5}{15}
Add 2 and 13 to get 15.
-\frac{3}{10}=\frac{1}{15}z-\frac{1}{3}
Divide each term of z-5 by 15 to get \frac{1}{15}z-\frac{1}{3}.
\frac{1}{15}z-\frac{1}{3}=-\frac{3}{10}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{15}z=-\frac{3}{10}+\frac{1}{3}
Add \frac{1}{3} to both sides.
\frac{1}{15}z=-\frac{9}{30}+\frac{10}{30}
Least common multiple of 10 and 3 is 30. Convert -\frac{3}{10} and \frac{1}{3} to fractions with denominator 30.
\frac{1}{15}z=\frac{-9+10}{30}
Since -\frac{9}{30} and \frac{10}{30} have the same denominator, add them by adding their numerators.
\frac{1}{15}z=\frac{1}{30}
Add -9 and 10 to get 1.
z=\frac{1}{30}\times 15
Multiply both sides by 15, the reciprocal of \frac{1}{15}.
z=\frac{15}{30}
Multiply \frac{1}{30} and 15 to get \frac{15}{30}.
z=\frac{1}{2}
Reduce the fraction \frac{15}{30} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}