Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-36i\right)\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-3i.
\frac{\left(2-36i\right)\left(2-3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-36i\right)\left(2-3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 2+2\times \left(-3i\right)-36i\times 2-36\left(-3\right)i^{2}}{13}
Multiply complex numbers 2-36i and 2-3i like you multiply binomials.
\frac{2\times 2+2\times \left(-3i\right)-36i\times 2-36\left(-3\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{4-6i-72i-108}{13}
Do the multiplications in 2\times 2+2\times \left(-3i\right)-36i\times 2-36\left(-3\right)\left(-1\right).
\frac{4-108+\left(-6-72\right)i}{13}
Combine the real and imaginary parts in 4-6i-72i-108.
\frac{-104-78i}{13}
Do the additions in 4-108+\left(-6-72\right)i.
-8-6i
Divide -104-78i by 13 to get -8-6i.
Re(\frac{\left(2-36i\right)\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
Multiply both numerator and denominator of \frac{2-36i}{2+3i} by the complex conjugate of the denominator, 2-3i.
Re(\frac{\left(2-36i\right)\left(2-3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-36i\right)\left(2-3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 2+2\times \left(-3i\right)-36i\times 2-36\left(-3\right)i^{2}}{13})
Multiply complex numbers 2-36i and 2-3i like you multiply binomials.
Re(\frac{2\times 2+2\times \left(-3i\right)-36i\times 2-36\left(-3\right)\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{4-6i-72i-108}{13})
Do the multiplications in 2\times 2+2\times \left(-3i\right)-36i\times 2-36\left(-3\right)\left(-1\right).
Re(\frac{4-108+\left(-6-72\right)i}{13})
Combine the real and imaginary parts in 4-6i-72i-108.
Re(\frac{-104-78i}{13})
Do the additions in 4-108+\left(-6-72\right)i.
Re(-8-6i)
Divide -104-78i by 13 to get -8-6i.
-8
The real part of -8-6i is -8.