Solve for x
x\geq \frac{1}{9}
Graph
Share
Copied to clipboard
2\left(2-3x\right)-3\left(x-1\right)\leq 6
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
4-6x-3\left(x-1\right)\leq 6
Use the distributive property to multiply 2 by 2-3x.
4-6x-3x+3\leq 6
Use the distributive property to multiply -3 by x-1.
4-9x+3\leq 6
Combine -6x and -3x to get -9x.
7-9x\leq 6
Add 4 and 3 to get 7.
-9x\leq 6-7
Subtract 7 from both sides.
-9x\leq -1
Subtract 7 from 6 to get -1.
x\geq \frac{-1}{-9}
Divide both sides by -9. Since -9 is negative, the inequality direction is changed.
x\geq \frac{1}{9}
Fraction \frac{-1}{-9} can be simplified to \frac{1}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}