Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-3i\right)\times 25}{17-6i}
Divide 2-3i by \frac{17-6i}{25} by multiplying 2-3i by the reciprocal of \frac{17-6i}{25}.
\frac{2\times 25-3i\times 25}{17-6i}
Multiply 2-3i times 25.
\frac{50-75i}{17-6i}
Do the multiplications in 2\times 25-3i\times 25.
\frac{\left(50-75i\right)\left(17+6i\right)}{\left(17-6i\right)\left(17+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 17+6i.
\frac{\left(50-75i\right)\left(17+6i\right)}{17^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(50-75i\right)\left(17+6i\right)}{325}
By definition, i^{2} is -1. Calculate the denominator.
\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6i^{2}}{325}
Multiply complex numbers 50-75i and 17+6i like you multiply binomials.
\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right)}{325}
By definition, i^{2} is -1.
\frac{850+300i-1275i+450}{325}
Do the multiplications in 50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right).
\frac{850+450+\left(300-1275\right)i}{325}
Combine the real and imaginary parts in 850+300i-1275i+450.
\frac{1300-975i}{325}
Do the additions in 850+450+\left(300-1275\right)i.
4-3i
Divide 1300-975i by 325 to get 4-3i.
Re(\frac{\left(2-3i\right)\times 25}{17-6i})
Divide 2-3i by \frac{17-6i}{25} by multiplying 2-3i by the reciprocal of \frac{17-6i}{25}.
Re(\frac{2\times 25-3i\times 25}{17-6i})
Multiply 2-3i times 25.
Re(\frac{50-75i}{17-6i})
Do the multiplications in 2\times 25-3i\times 25.
Re(\frac{\left(50-75i\right)\left(17+6i\right)}{\left(17-6i\right)\left(17+6i\right)})
Multiply both numerator and denominator of \frac{50-75i}{17-6i} by the complex conjugate of the denominator, 17+6i.
Re(\frac{\left(50-75i\right)\left(17+6i\right)}{17^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(50-75i\right)\left(17+6i\right)}{325})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6i^{2}}{325})
Multiply complex numbers 50-75i and 17+6i like you multiply binomials.
Re(\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right)}{325})
By definition, i^{2} is -1.
Re(\frac{850+300i-1275i+450}{325})
Do the multiplications in 50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right).
Re(\frac{850+450+\left(300-1275\right)i}{325})
Combine the real and imaginary parts in 850+300i-1275i+450.
Re(\frac{1300-975i}{325})
Do the additions in 850+450+\left(300-1275\right)i.
Re(4-3i)
Divide 1300-975i by 325 to get 4-3i.
4
The real part of 4-3i is 4.