Evaluate
4-3i
Real Part
4
Share
Copied to clipboard
\frac{\left(2-3i\right)\times 25}{17-6i}
Divide 2-3i by \frac{17-6i}{25} by multiplying 2-3i by the reciprocal of \frac{17-6i}{25}.
\frac{2\times 25-3i\times 25}{17-6i}
Multiply 2-3i times 25.
\frac{50-75i}{17-6i}
Do the multiplications in 2\times 25-3i\times 25.
\frac{\left(50-75i\right)\left(17+6i\right)}{\left(17-6i\right)\left(17+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 17+6i.
\frac{\left(50-75i\right)\left(17+6i\right)}{17^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(50-75i\right)\left(17+6i\right)}{325}
By definition, i^{2} is -1. Calculate the denominator.
\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6i^{2}}{325}
Multiply complex numbers 50-75i and 17+6i like you multiply binomials.
\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right)}{325}
By definition, i^{2} is -1.
\frac{850+300i-1275i+450}{325}
Do the multiplications in 50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right).
\frac{850+450+\left(300-1275\right)i}{325}
Combine the real and imaginary parts in 850+300i-1275i+450.
\frac{1300-975i}{325}
Do the additions in 850+450+\left(300-1275\right)i.
4-3i
Divide 1300-975i by 325 to get 4-3i.
Re(\frac{\left(2-3i\right)\times 25}{17-6i})
Divide 2-3i by \frac{17-6i}{25} by multiplying 2-3i by the reciprocal of \frac{17-6i}{25}.
Re(\frac{2\times 25-3i\times 25}{17-6i})
Multiply 2-3i times 25.
Re(\frac{50-75i}{17-6i})
Do the multiplications in 2\times 25-3i\times 25.
Re(\frac{\left(50-75i\right)\left(17+6i\right)}{\left(17-6i\right)\left(17+6i\right)})
Multiply both numerator and denominator of \frac{50-75i}{17-6i} by the complex conjugate of the denominator, 17+6i.
Re(\frac{\left(50-75i\right)\left(17+6i\right)}{17^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(50-75i\right)\left(17+6i\right)}{325})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6i^{2}}{325})
Multiply complex numbers 50-75i and 17+6i like you multiply binomials.
Re(\frac{50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right)}{325})
By definition, i^{2} is -1.
Re(\frac{850+300i-1275i+450}{325})
Do the multiplications in 50\times 17+50\times \left(6i\right)-75i\times 17-75\times 6\left(-1\right).
Re(\frac{850+450+\left(300-1275\right)i}{325})
Combine the real and imaginary parts in 850+300i-1275i+450.
Re(\frac{1300-975i}{325})
Do the additions in 850+450+\left(300-1275\right)i.
Re(4-3i)
Divide 1300-975i by 325 to get 4-3i.
4
The real part of 4-3i is 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}