Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{3acx-eaf+3ad+e}{ec}\text{, }&c\neq 0\text{ and }a\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }d\neq \frac{ef}{3}\text{ and }a=-\frac{e}{3d-ef}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{3acx-eaf+3ad+e}{ec}\text{, }&c\neq 0\text{ and }a\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }d\neq \frac{ef}{3}\text{ and }a=-\frac{e}{3d-ef}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{e\left(bc+1\right)}{3cx-ef+3d}\text{, }&\left(c=0\text{ and }d\neq \frac{ef}{3}\right)\text{ or }\left(b\neq -\frac{1}{c}\text{ and }f\neq \frac{3\left(cx+d\right)}{e}\text{ and }c\neq 0\right)\\a\neq 0\text{, }&d=-cx+\frac{ef}{3}\text{ and }b=-\frac{1}{c}\text{ and }c\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
2-\left(1-bc\right)+ae^{-1}\times 3\left(cx+d\right)=fa
Multiply both sides of the equation by a.
2-1+bc+ae^{-1}\times 3\left(cx+d\right)=fa
To find the opposite of 1-bc, find the opposite of each term.
1+bc+ae^{-1}\times 3\left(cx+d\right)=fa
Subtract 1 from 2 to get 1.
1+bc+3ae^{-1}cx+3ae^{-1}d=fa
Use the distributive property to multiply ae^{-1}\times 3 by cx+d.
bc+3ae^{-1}cx+3ae^{-1}d=fa-1
Subtract 1 from both sides.
bc+3ae^{-1}d=fa-1-3ae^{-1}cx
Subtract 3ae^{-1}cx from both sides.
bc=fa-1-3ae^{-1}cx-3ae^{-1}d
Subtract 3ae^{-1}d from both sides.
bc=af-1-3\times \frac{1}{e}acx-3\times \frac{1}{e}ad
Reorder the terms.
bc=af-1+\frac{-3}{e}acx-3\times \frac{1}{e}ad
Express -3\times \frac{1}{e} as a single fraction.
bc=af-1+\frac{-3a}{e}cx-3\times \frac{1}{e}ad
Express \frac{-3}{e}a as a single fraction.
bc=af-1+\frac{-3ac}{e}x-3\times \frac{1}{e}ad
Express \frac{-3a}{e}c as a single fraction.
bc=af-1+\frac{-3acx}{e}-3\times \frac{1}{e}ad
Express \frac{-3ac}{e}x as a single fraction.
bc=af-1+\frac{-3acx}{e}+\frac{-3}{e}ad
Express -3\times \frac{1}{e} as a single fraction.
bc=af-1+\frac{-3acx}{e}+\frac{-3a}{e}d
Express \frac{-3}{e}a as a single fraction.
bc=af-1+\frac{-3acx}{e}+\frac{-3ad}{e}
Express \frac{-3a}{e}d as a single fraction.
bc=\frac{\left(af-1\right)e}{e}+\frac{-3acx}{e}+\frac{-3ad}{e}
To add or subtract expressions, expand them to make their denominators the same. Multiply af-1 times \frac{e}{e}.
bc=\frac{\left(af-1\right)e-3acx}{e}+\frac{-3ad}{e}
Since \frac{\left(af-1\right)e}{e} and \frac{-3acx}{e} have the same denominator, add them by adding their numerators.
bc=\frac{afe-e-3xac}{e}+\frac{-3ad}{e}
Do the multiplications in \left(af-1\right)e-3acx.
bc=\frac{afe-e-3xac-3ad}{e}
Since \frac{afe-e-3xac}{e} and \frac{-3ad}{e} have the same denominator, add them by adding their numerators.
cb=\frac{-3acx+eaf-3ad-e}{e}
The equation is in standard form.
\frac{cb}{c}=\frac{-3acx+eaf-3ad-e}{ec}
Divide both sides by c.
b=\frac{-3acx+eaf-3ad-e}{ec}
Dividing by c undoes the multiplication by c.
2-\left(1-bc\right)+ae^{-1}\times 3\left(cx+d\right)=fa
Multiply both sides of the equation by a.
2-1+bc+ae^{-1}\times 3\left(cx+d\right)=fa
To find the opposite of 1-bc, find the opposite of each term.
1+bc+ae^{-1}\times 3\left(cx+d\right)=fa
Subtract 1 from 2 to get 1.
1+bc+3ae^{-1}cx+3ae^{-1}d=fa
Use the distributive property to multiply ae^{-1}\times 3 by cx+d.
bc+3ae^{-1}cx+3ae^{-1}d=fa-1
Subtract 1 from both sides.
bc+3ae^{-1}d=fa-1-3ae^{-1}cx
Subtract 3ae^{-1}cx from both sides.
bc=fa-1-3ae^{-1}cx-3ae^{-1}d
Subtract 3ae^{-1}d from both sides.
bc=af-1-3\times \frac{1}{e}acx-3\times \frac{1}{e}ad
Reorder the terms.
bc=af-1+\frac{-3}{e}acx-3\times \frac{1}{e}ad
Express -3\times \frac{1}{e} as a single fraction.
bc=af-1+\frac{-3a}{e}cx-3\times \frac{1}{e}ad
Express \frac{-3}{e}a as a single fraction.
bc=af-1+\frac{-3ac}{e}x-3\times \frac{1}{e}ad
Express \frac{-3a}{e}c as a single fraction.
bc=af-1+\frac{-3acx}{e}-3\times \frac{1}{e}ad
Express \frac{-3ac}{e}x as a single fraction.
bc=af-1+\frac{-3acx}{e}+\frac{-3}{e}ad
Express -3\times \frac{1}{e} as a single fraction.
bc=af-1+\frac{-3acx}{e}+\frac{-3a}{e}d
Express \frac{-3}{e}a as a single fraction.
bc=af-1+\frac{-3acx}{e}+\frac{-3ad}{e}
Express \frac{-3a}{e}d as a single fraction.
bc=\frac{\left(af-1\right)e}{e}+\frac{-3acx}{e}+\frac{-3ad}{e}
To add or subtract expressions, expand them to make their denominators the same. Multiply af-1 times \frac{e}{e}.
bc=\frac{\left(af-1\right)e-3acx}{e}+\frac{-3ad}{e}
Since \frac{\left(af-1\right)e}{e} and \frac{-3acx}{e} have the same denominator, add them by adding their numerators.
bc=\frac{afe-e-3xac}{e}+\frac{-3ad}{e}
Do the multiplications in \left(af-1\right)e-3acx.
bc=\frac{afe-e-3xac-3ad}{e}
Since \frac{afe-e-3xac}{e} and \frac{-3ad}{e} have the same denominator, add them by adding their numerators.
cb=\frac{-3acx+eaf-3ad-e}{e}
The equation is in standard form.
\frac{cb}{c}=\frac{-3acx+eaf-3ad-e}{ec}
Divide both sides by c.
b=\frac{-3acx+eaf-3ad-e}{ec}
Dividing by c undoes the multiplication by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}