Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}
Rationalize the denominator of \frac{2-\sqrt{7}}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
\frac{\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{9-7}
Square 3. Square \sqrt{7}.
\frac{\left(2-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{2}
Subtract 7 from 9 to get 2.
\frac{6-2\sqrt{7}-3\sqrt{7}+\left(\sqrt{7}\right)^{2}}{2}
Apply the distributive property by multiplying each term of 2-\sqrt{7} by each term of 3-\sqrt{7}.
\frac{6-5\sqrt{7}+\left(\sqrt{7}\right)^{2}}{2}
Combine -2\sqrt{7} and -3\sqrt{7} to get -5\sqrt{7}.
\frac{6-5\sqrt{7}+7}{2}
The square of \sqrt{7} is 7.
\frac{13-5\sqrt{7}}{2}
Add 6 and 7 to get 13.