Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{5}}{7-\sqrt{7}}\times 1
Divide 7+\sqrt{7} by 7+\sqrt{7} to get 1.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{\left(7-\sqrt{7}\right)\left(7+\sqrt{7}\right)}\times 1
Rationalize the denominator of \frac{2-\sqrt{5}}{7-\sqrt{7}} by multiplying numerator and denominator by 7+\sqrt{7}.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{7^{2}-\left(\sqrt{7}\right)^{2}}\times 1
Consider \left(7-\sqrt{7}\right)\left(7+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{49-7}\times 1
Square 7. Square \sqrt{7}.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{42}\times 1
Subtract 7 from 49 to get 42.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{42}
Express \frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{42}\times 1 as a single fraction.
\frac{14+2\sqrt{7}-7\sqrt{5}-\sqrt{5}\sqrt{7}}{42}
Apply the distributive property by multiplying each term of 2-\sqrt{5} by each term of 7+\sqrt{7}.
\frac{14+2\sqrt{7}-7\sqrt{5}-\sqrt{35}}{42}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.