Evaluate
\frac{\sqrt{7}}{21}-\frac{\sqrt{5}}{6}-\frac{\sqrt{35}}{42}+\frac{1}{3}\approx -0.054215548
Factor
\frac{2 \sqrt{7} + 14 - \sqrt{35} - 7 \sqrt{5}}{42} = -0.054215547701642004
Share
Copied to clipboard
\frac{2-\sqrt{5}}{7-\sqrt{7}}\times 1
Divide 7+\sqrt{7} by 7+\sqrt{7} to get 1.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{\left(7-\sqrt{7}\right)\left(7+\sqrt{7}\right)}\times 1
Rationalize the denominator of \frac{2-\sqrt{5}}{7-\sqrt{7}} by multiplying numerator and denominator by 7+\sqrt{7}.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{7^{2}-\left(\sqrt{7}\right)^{2}}\times 1
Consider \left(7-\sqrt{7}\right)\left(7+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{49-7}\times 1
Square 7. Square \sqrt{7}.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{42}\times 1
Subtract 7 from 49 to get 42.
\frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{42}
Express \frac{\left(2-\sqrt{5}\right)\left(7+\sqrt{7}\right)}{42}\times 1 as a single fraction.
\frac{14+2\sqrt{7}-7\sqrt{5}-\sqrt{5}\sqrt{7}}{42}
Apply the distributive property by multiplying each term of 2-\sqrt{5} by each term of 7+\sqrt{7}.
\frac{14+2\sqrt{7}-7\sqrt{5}-\sqrt{35}}{42}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}