Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-\sqrt{3}\right)\left(4+\sqrt{6}\right)}{\left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right)}
Rationalize the denominator of \frac{2-\sqrt{3}}{4-\sqrt{6}} by multiplying numerator and denominator by 4+\sqrt{6}.
\frac{\left(2-\sqrt{3}\right)\left(4+\sqrt{6}\right)}{4^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(4+\sqrt{6}\right)}{16-6}
Square 4. Square \sqrt{6}.
\frac{\left(2-\sqrt{3}\right)\left(4+\sqrt{6}\right)}{10}
Subtract 6 from 16 to get 10.
\frac{8+2\sqrt{6}-4\sqrt{3}-\sqrt{3}\sqrt{6}}{10}
Apply the distributive property by multiplying each term of 2-\sqrt{3} by each term of 4+\sqrt{6}.
\frac{8+2\sqrt{6}-4\sqrt{3}-\sqrt{3}\sqrt{3}\sqrt{2}}{10}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{8+2\sqrt{6}-4\sqrt{3}-3\sqrt{2}}{10}
Multiply \sqrt{3} and \sqrt{3} to get 3.