Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Rationalize the denominator of \frac{2-\sqrt{3}}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{2\sqrt{3}+2-\left(\sqrt{3}\right)^{2}-\sqrt{3}}{2}
Apply the distributive property by multiplying each term of 2-\sqrt{3} by each term of \sqrt{3}+1.
\frac{2\sqrt{3}+2-3-\sqrt{3}}{2}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}-1-\sqrt{3}}{2}
Subtract 3 from 2 to get -1.
\frac{\sqrt{3}-1}{2}
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.