Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Quiz
Arithmetic
5 problems similar to:
\frac { 2 - \frac { 2 } { 1 - 2 } } { 2 + \frac { 2 } { 1 + 2 } } =
Share
Copied to clipboard
\frac{2-\frac{2}{-1}}{2+\frac{2}{1+2}}
Subtract 2 from 1 to get -1.
\frac{2-\left(-2\right)}{2+\frac{2}{1+2}}
Fraction \frac{2}{-1} can be rewritten as -2 by extracting the negative sign.
\frac{2+2}{2+\frac{2}{1+2}}
The opposite of -2 is 2.
\frac{4}{2+\frac{2}{1+2}}
Add 2 and 2 to get 4.
\frac{4}{2+\frac{2}{3}}
Add 1 and 2 to get 3.
\frac{4}{\frac{6}{3}+\frac{2}{3}}
Convert 2 to fraction \frac{6}{3}.
\frac{4}{\frac{6+2}{3}}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{4}{\frac{8}{3}}
Add 6 and 2 to get 8.
4\times \frac{3}{8}
Divide 4 by \frac{8}{3} by multiplying 4 by the reciprocal of \frac{8}{3}.
\frac{4\times 3}{8}
Express 4\times \frac{3}{8} as a single fraction.
\frac{12}{8}
Multiply 4 and 3 to get 12.
\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}