Evaluate
-\frac{189}{5}=-37.8
Factor
-\frac{189}{5} = -37\frac{4}{5} = -37.8
Share
Copied to clipboard
\frac{\frac{40}{20}-\frac{1}{20}}{\frac{3}{4}-\frac{4}{5}}+\frac{6}{5}
Convert 2 to fraction \frac{40}{20}.
\frac{\frac{40-1}{20}}{\frac{3}{4}-\frac{4}{5}}+\frac{6}{5}
Since \frac{40}{20} and \frac{1}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{39}{20}}{\frac{3}{4}-\frac{4}{5}}+\frac{6}{5}
Subtract 1 from 40 to get 39.
\frac{\frac{39}{20}}{\frac{15}{20}-\frac{16}{20}}+\frac{6}{5}
Least common multiple of 4 and 5 is 20. Convert \frac{3}{4} and \frac{4}{5} to fractions with denominator 20.
\frac{\frac{39}{20}}{\frac{15-16}{20}}+\frac{6}{5}
Since \frac{15}{20} and \frac{16}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{39}{20}}{-\frac{1}{20}}+\frac{6}{5}
Subtract 16 from 15 to get -1.
\frac{39}{20}\left(-20\right)+\frac{6}{5}
Divide \frac{39}{20} by -\frac{1}{20} by multiplying \frac{39}{20} by the reciprocal of -\frac{1}{20}.
\frac{39\left(-20\right)}{20}+\frac{6}{5}
Express \frac{39}{20}\left(-20\right) as a single fraction.
\frac{-780}{20}+\frac{6}{5}
Multiply 39 and -20 to get -780.
-39+\frac{6}{5}
Divide -780 by 20 to get -39.
-\frac{195}{5}+\frac{6}{5}
Convert -39 to fraction -\frac{195}{5}.
\frac{-195+6}{5}
Since -\frac{195}{5} and \frac{6}{5} have the same denominator, add them by adding their numerators.
-\frac{189}{5}
Add -195 and 6 to get -189.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}