Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
2\times 2\left(x-3\right)-3\times 6\left(x-2\right)=7x-2-3\left(2x-2\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
4\left(x-3\right)-3\times 6\left(x-2\right)=7x-2-3\left(2x-2\right)
Multiply 2 and 2 to get 4.
4x-12-3\times 6\left(x-2\right)=7x-2-3\left(2x-2\right)
Use the distributive property to multiply 4 by x-3.
4x-12-18\left(x-2\right)=7x-2-3\left(2x-2\right)
Multiply -3 and 6 to get -18.
4x-12-18x+36=7x-2-3\left(2x-2\right)
Use the distributive property to multiply -18 by x-2.
-14x-12+36=7x-2-3\left(2x-2\right)
Combine 4x and -18x to get -14x.
-14x+24=7x-2-3\left(2x-2\right)
Add -12 and 36 to get 24.
-14x+24=7x-2-6x+6
Use the distributive property to multiply -3 by 2x-2.
-14x+24=x-2+6
Combine 7x and -6x to get x.
-14x+24=x+4
Add -2 and 6 to get 4.
-14x+24-x=4
Subtract x from both sides.
-15x+24=4
Combine -14x and -x to get -15x.
-15x=4-24
Subtract 24 from both sides.
-15x=-20
Subtract 24 from 4 to get -20.
x=\frac{-20}{-15}
Divide both sides by -15.
x=\frac{4}{3}
Reduce the fraction \frac{-20}{-15} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}