Solve for x
x\geq 25
Graph
Share
Copied to clipboard
3\times 2\left(x-1\right)-2\left(2x+1\right)\geq 42
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
6\left(x-1\right)-2\left(2x+1\right)\geq 42
Multiply 3 and 2 to get 6.
6x-6-2\left(2x+1\right)\geq 42
Use the distributive property to multiply 6 by x-1.
6x-6-4x-2\geq 42
Use the distributive property to multiply -2 by 2x+1.
2x-6-2\geq 42
Combine 6x and -4x to get 2x.
2x-8\geq 42
Subtract 2 from -6 to get -8.
2x\geq 42+8
Add 8 to both sides.
2x\geq 50
Add 42 and 8 to get 50.
x\geq \frac{50}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
x\geq 25
Divide 50 by 2 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}