Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\times 2\left(x+1\right)\left(x-1\right)-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Multiply both sides of the equation by 12, the least common multiple of 3,2,6,4.
8\left(x+1\right)\left(x-1\right)-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Multiply 4 and 2 to get 8.
\left(8x+8\right)\left(x-1\right)-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Use the distributive property to multiply 8 by x+1.
8x^{2}-8-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Use the distributive property to multiply 8x+8 by x-1 and combine like terms.
8x^{2}-8-30x+18=-2\left(2x+1\right)^{2}+21
Use the distributive property to multiply -6 by 5x-3.
8x^{2}+10-30x=-2\left(2x+1\right)^{2}+21
Add -8 and 18 to get 10.
8x^{2}+10-30x=-2\left(4x^{2}+4x+1\right)+21
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
8x^{2}+10-30x=-8x^{2}-8x-2+21
Use the distributive property to multiply -2 by 4x^{2}+4x+1.
8x^{2}+10-30x=-8x^{2}-8x+19
Add -2 and 21 to get 19.
8x^{2}+10-30x+8x^{2}=-8x+19
Add 8x^{2} to both sides.
16x^{2}+10-30x=-8x+19
Combine 8x^{2} and 8x^{2} to get 16x^{2}.
16x^{2}+10-30x+8x=19
Add 8x to both sides.
16x^{2}+10-22x=19
Combine -30x and 8x to get -22x.
16x^{2}+10-22x-19=0
Subtract 19 from both sides.
16x^{2}-9-22x=0
Subtract 19 from 10 to get -9.
16x^{2}-22x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 16\left(-9\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -22 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 16\left(-9\right)}}{2\times 16}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-64\left(-9\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-22\right)±\sqrt{484+576}}{2\times 16}
Multiply -64 times -9.
x=\frac{-\left(-22\right)±\sqrt{1060}}{2\times 16}
Add 484 to 576.
x=\frac{-\left(-22\right)±2\sqrt{265}}{2\times 16}
Take the square root of 1060.
x=\frac{22±2\sqrt{265}}{2\times 16}
The opposite of -22 is 22.
x=\frac{22±2\sqrt{265}}{32}
Multiply 2 times 16.
x=\frac{2\sqrt{265}+22}{32}
Now solve the equation x=\frac{22±2\sqrt{265}}{32} when ± is plus. Add 22 to 2\sqrt{265}.
x=\frac{\sqrt{265}+11}{16}
Divide 22+2\sqrt{265} by 32.
x=\frac{22-2\sqrt{265}}{32}
Now solve the equation x=\frac{22±2\sqrt{265}}{32} when ± is minus. Subtract 2\sqrt{265} from 22.
x=\frac{11-\sqrt{265}}{16}
Divide 22-2\sqrt{265} by 32.
x=\frac{\sqrt{265}+11}{16} x=\frac{11-\sqrt{265}}{16}
The equation is now solved.
4\times 2\left(x+1\right)\left(x-1\right)-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Multiply both sides of the equation by 12, the least common multiple of 3,2,6,4.
8\left(x+1\right)\left(x-1\right)-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Multiply 4 and 2 to get 8.
\left(8x+8\right)\left(x-1\right)-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Use the distributive property to multiply 8 by x+1.
8x^{2}-8-6\left(5x-3\right)=-2\left(2x+1\right)^{2}+21
Use the distributive property to multiply 8x+8 by x-1 and combine like terms.
8x^{2}-8-30x+18=-2\left(2x+1\right)^{2}+21
Use the distributive property to multiply -6 by 5x-3.
8x^{2}+10-30x=-2\left(2x+1\right)^{2}+21
Add -8 and 18 to get 10.
8x^{2}+10-30x=-2\left(4x^{2}+4x+1\right)+21
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
8x^{2}+10-30x=-8x^{2}-8x-2+21
Use the distributive property to multiply -2 by 4x^{2}+4x+1.
8x^{2}+10-30x=-8x^{2}-8x+19
Add -2 and 21 to get 19.
8x^{2}+10-30x+8x^{2}=-8x+19
Add 8x^{2} to both sides.
16x^{2}+10-30x=-8x+19
Combine 8x^{2} and 8x^{2} to get 16x^{2}.
16x^{2}+10-30x+8x=19
Add 8x to both sides.
16x^{2}+10-22x=19
Combine -30x and 8x to get -22x.
16x^{2}-22x=19-10
Subtract 10 from both sides.
16x^{2}-22x=9
Subtract 10 from 19 to get 9.
\frac{16x^{2}-22x}{16}=\frac{9}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{22}{16}\right)x=\frac{9}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{11}{8}x=\frac{9}{16}
Reduce the fraction \frac{-22}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{11}{8}x+\left(-\frac{11}{16}\right)^{2}=\frac{9}{16}+\left(-\frac{11}{16}\right)^{2}
Divide -\frac{11}{8}, the coefficient of the x term, by 2 to get -\frac{11}{16}. Then add the square of -\frac{11}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{8}x+\frac{121}{256}=\frac{9}{16}+\frac{121}{256}
Square -\frac{11}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{8}x+\frac{121}{256}=\frac{265}{256}
Add \frac{9}{16} to \frac{121}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{16}\right)^{2}=\frac{265}{256}
Factor x^{2}-\frac{11}{8}x+\frac{121}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{16}\right)^{2}}=\sqrt{\frac{265}{256}}
Take the square root of both sides of the equation.
x-\frac{11}{16}=\frac{\sqrt{265}}{16} x-\frac{11}{16}=-\frac{\sqrt{265}}{16}
Simplify.
x=\frac{\sqrt{265}+11}{16} x=\frac{11-\sqrt{265}}{16}
Add \frac{11}{16} to both sides of the equation.