Solve for x
x = -\frac{55}{2} = -27\frac{1}{2} = -27.5
Graph
Share
Copied to clipboard
2\left(x+1\right)-10x=36-3\left(2x-7\right)
Multiply both sides of the equation by 18, the least common multiple of 9,6.
2x+2-10x=36-3\left(2x-7\right)
Use the distributive property to multiply 2 by x+1.
-8x+2=36-3\left(2x-7\right)
Combine 2x and -10x to get -8x.
-8x+2=36-6x+21
Use the distributive property to multiply -3 by 2x-7.
-8x+2=57-6x
Add 36 and 21 to get 57.
-8x+2+6x=57
Add 6x to both sides.
-2x+2=57
Combine -8x and 6x to get -2x.
-2x=57-2
Subtract 2 from both sides.
-2x=55
Subtract 2 from 57 to get 55.
x=\frac{55}{-2}
Divide both sides by -2.
x=-\frac{55}{2}
Fraction \frac{55}{-2} can be rewritten as -\frac{55}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}