Solve for u
u = -\frac{31}{10} = -3\frac{1}{10} = -3.1
Share
Copied to clipboard
3\times 2\left(u-3\right)-4\times 2\left(u+4\right)=12+6\times 3u
Multiply both sides of the equation by 12, the least common multiple of 4,3,2.
6\left(u-3\right)-4\times 2\left(u+4\right)=12+6\times 3u
Multiply 3 and 2 to get 6.
6u-18-4\times 2\left(u+4\right)=12+6\times 3u
Use the distributive property to multiply 6 by u-3.
6u-18-8\left(u+4\right)=12+6\times 3u
Multiply -4 and 2 to get -8.
6u-18-8u-32=12+6\times 3u
Use the distributive property to multiply -8 by u+4.
-2u-18-32=12+6\times 3u
Combine 6u and -8u to get -2u.
-2u-50=12+6\times 3u
Subtract 32 from -18 to get -50.
-2u-50=12+18u
Multiply 6 and 3 to get 18.
-2u-50-18u=12
Subtract 18u from both sides.
-20u-50=12
Combine -2u and -18u to get -20u.
-20u=12+50
Add 50 to both sides.
-20u=62
Add 12 and 50 to get 62.
u=\frac{62}{-20}
Divide both sides by -20.
u=-\frac{31}{10}
Reduce the fraction \frac{62}{-20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}