Solve for j
j=\frac{m\left(5-2k\right)}{2}
m\neq 0
Solve for k
k=-\frac{j}{m}+\frac{5}{2}
m\neq 0
Share
Copied to clipboard
2\left(j-m\right)+mk=m\times 3-km
Multiply both sides of the equation by m.
2j-2m+mk=m\times 3-km
Use the distributive property to multiply 2 by j-m.
2j+mk=m\times 3-km+2m
Add 2m to both sides.
2j+mk=5m-km
Combine m\times 3 and 2m to get 5m.
2j=5m-km-mk
Subtract mk from both sides.
2j=5m-2km
Combine -km and -mk to get -2km.
\frac{2j}{2}=\frac{m\left(5-2k\right)}{2}
Divide both sides by 2.
j=\frac{m\left(5-2k\right)}{2}
Dividing by 2 undoes the multiplication by 2.
j=-km+\frac{5m}{2}
Divide m\left(5-2k\right) by 2.
2\left(j-m\right)+mk=m\times 3-km
Multiply both sides of the equation by m.
2j-2m+mk=m\times 3-km
Use the distributive property to multiply 2 by j-m.
2j-2m+mk+km=m\times 3
Add km to both sides.
2j-2m+2mk=m\times 3
Combine mk and km to get 2mk.
-2m+2mk=m\times 3-2j
Subtract 2j from both sides.
2mk=m\times 3-2j+2m
Add 2m to both sides.
2mk=5m-2j
Combine m\times 3 and 2m to get 5m.
\frac{2mk}{2m}=\frac{5m-2j}{2m}
Divide both sides by 2m.
k=\frac{5m-2j}{2m}
Dividing by 2m undoes the multiplication by 2m.
k=-\frac{j}{m}+\frac{5}{2}
Divide 5m-2j by 2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}