Evaluate
\frac{2}{c+d}
Expand
\frac{2}{c+d}
Quiz
Algebra
5 problems similar to:
\frac { 2 ( c + d ) } { 3 } \cdot \frac { 18 } { 6 ( c + d ) ^ { 2 } }
Share
Copied to clipboard
\frac{2c+2d}{3}\times \frac{18}{6\left(c+d\right)^{2}}
Use the distributive property to multiply 2 by c+d.
\frac{\left(2c+2d\right)\times 18}{3\times 6\left(c+d\right)^{2}}
Multiply \frac{2c+2d}{3} times \frac{18}{6\left(c+d\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2c+2d}{\left(c+d\right)^{2}}
Cancel out 3\times 6 in both numerator and denominator.
\frac{2\left(c+d\right)}{\left(c+d\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{c+d}
Cancel out c+d in both numerator and denominator.
\frac{2c+2d}{3}\times \frac{18}{6\left(c+d\right)^{2}}
Use the distributive property to multiply 2 by c+d.
\frac{\left(2c+2d\right)\times 18}{3\times 6\left(c+d\right)^{2}}
Multiply \frac{2c+2d}{3} times \frac{18}{6\left(c+d\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2c+2d}{\left(c+d\right)^{2}}
Cancel out 3\times 6 in both numerator and denominator.
\frac{2\left(c+d\right)}{\left(c+d\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{c+d}
Cancel out c+d in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}