Evaluate
\frac{1}{2b^{18}}
Expand
\frac{1}{2b^{18}}
Share
Copied to clipboard
\frac{2\left(a^{-2}\right)^{-3}\left(b^{8}\right)^{-3}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}
Expand \left(a^{-2}b^{8}\right)^{-3}.
\frac{2a^{6}\left(b^{8}\right)^{-3}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{2a^{6}b^{-24}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 8 and -3 to get -24.
\frac{2a^{6}b^{-24}a^{-6}b^{-6}}{\left(2b^{-6}\right)^{2}}
Expand \left(ab\right)^{-6}.
\frac{2b^{-24}b^{-6}}{\left(2b^{-6}\right)^{2}}
Multiply a^{6} and a^{-6} to get 1.
\frac{2b^{-30}}{\left(2b^{-6}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -24 and -6 to get -30.
\frac{2b^{-30}}{2^{2}\left(b^{-6}\right)^{2}}
Expand \left(2b^{-6}\right)^{2}.
\frac{2b^{-30}}{2^{2}b^{-12}}
To raise a power to another power, multiply the exponents. Multiply -6 and 2 to get -12.
\frac{2b^{-30}}{4b^{-12}}
Calculate 2 to the power of 2 and get 4.
\frac{b^{-30}}{2b^{-12}}
Cancel out 2 in both numerator and denominator.
\frac{1}{2b^{18}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2\left(a^{-2}\right)^{-3}\left(b^{8}\right)^{-3}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}
Expand \left(a^{-2}b^{8}\right)^{-3}.
\frac{2a^{6}\left(b^{8}\right)^{-3}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{2a^{6}b^{-24}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 8 and -3 to get -24.
\frac{2a^{6}b^{-24}a^{-6}b^{-6}}{\left(2b^{-6}\right)^{2}}
Expand \left(ab\right)^{-6}.
\frac{2b^{-24}b^{-6}}{\left(2b^{-6}\right)^{2}}
Multiply a^{6} and a^{-6} to get 1.
\frac{2b^{-30}}{\left(2b^{-6}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -24 and -6 to get -30.
\frac{2b^{-30}}{2^{2}\left(b^{-6}\right)^{2}}
Expand \left(2b^{-6}\right)^{2}.
\frac{2b^{-30}}{2^{2}b^{-12}}
To raise a power to another power, multiply the exponents. Multiply -6 and 2 to get -12.
\frac{2b^{-30}}{4b^{-12}}
Calculate 2 to the power of 2 and get 4.
\frac{b^{-30}}{2b^{-12}}
Cancel out 2 in both numerator and denominator.
\frac{1}{2b^{18}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}