Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\left(9x+14\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{x+2}
Factor x^{2}-4.
\frac{2\left(9x+14\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2\left(x+1\right)}{x+2} times \frac{x-2}{x-2}.
\frac{2\left(9x+14\right)+2\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{2\left(9x+14\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{18x+28+2x^{2}-4x+2x-4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2\left(9x+14\right)+2\left(x+1\right)\left(x-2\right).
\frac{16x+24+2x^{2}}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 18x+28+2x^{2}-4x+2x-4.
\frac{2\left(x+2\right)\left(x+6\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{16x+24+2x^{2}}{\left(x-2\right)\left(x+2\right)}.
\frac{2\left(x+6\right)}{x-2}
Cancel out x+2 in both numerator and denominator.
\frac{2x+12}{x-2}
Use the distributive property to multiply 2 by x+6.
\frac{2\left(9x+14\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{x+2}
Factor x^{2}-4.
\frac{2\left(9x+14\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2\left(x+1\right)}{x+2} times \frac{x-2}{x-2}.
\frac{2\left(9x+14\right)+2\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{2\left(9x+14\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{18x+28+2x^{2}-4x+2x-4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2\left(9x+14\right)+2\left(x+1\right)\left(x-2\right).
\frac{16x+24+2x^{2}}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 18x+28+2x^{2}-4x+2x-4.
\frac{2\left(x+2\right)\left(x+6\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{16x+24+2x^{2}}{\left(x-2\right)\left(x+2\right)}.
\frac{2\left(x+6\right)}{x-2}
Cancel out x+2 in both numerator and denominator.
\frac{2x+12}{x-2}
Use the distributive property to multiply 2 by x+6.