Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3x+1\right)^{2}=8\times 5
Multiply both sides by 5.
2\left(9x^{2}+6x+1\right)=8\times 5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
18x^{2}+12x+2=8\times 5
Use the distributive property to multiply 2 by 9x^{2}+6x+1.
18x^{2}+12x+2=40
Multiply 8 and 5 to get 40.
18x^{2}+12x+2-40=0
Subtract 40 from both sides.
18x^{2}+12x-38=0
Subtract 40 from 2 to get -38.
x=\frac{-12±\sqrt{12^{2}-4\times 18\left(-38\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 12 for b, and -38 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 18\left(-38\right)}}{2\times 18}
Square 12.
x=\frac{-12±\sqrt{144-72\left(-38\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-12±\sqrt{144+2736}}{2\times 18}
Multiply -72 times -38.
x=\frac{-12±\sqrt{2880}}{2\times 18}
Add 144 to 2736.
x=\frac{-12±24\sqrt{5}}{2\times 18}
Take the square root of 2880.
x=\frac{-12±24\sqrt{5}}{36}
Multiply 2 times 18.
x=\frac{24\sqrt{5}-12}{36}
Now solve the equation x=\frac{-12±24\sqrt{5}}{36} when ± is plus. Add -12 to 24\sqrt{5}.
x=\frac{2\sqrt{5}-1}{3}
Divide -12+24\sqrt{5} by 36.
x=\frac{-24\sqrt{5}-12}{36}
Now solve the equation x=\frac{-12±24\sqrt{5}}{36} when ± is minus. Subtract 24\sqrt{5} from -12.
x=\frac{-2\sqrt{5}-1}{3}
Divide -12-24\sqrt{5} by 36.
x=\frac{2\sqrt{5}-1}{3} x=\frac{-2\sqrt{5}-1}{3}
The equation is now solved.
2\left(3x+1\right)^{2}=8\times 5
Multiply both sides by 5.
2\left(9x^{2}+6x+1\right)=8\times 5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
18x^{2}+12x+2=8\times 5
Use the distributive property to multiply 2 by 9x^{2}+6x+1.
18x^{2}+12x+2=40
Multiply 8 and 5 to get 40.
18x^{2}+12x=40-2
Subtract 2 from both sides.
18x^{2}+12x=38
Subtract 2 from 40 to get 38.
\frac{18x^{2}+12x}{18}=\frac{38}{18}
Divide both sides by 18.
x^{2}+\frac{12}{18}x=\frac{38}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{2}{3}x=\frac{38}{18}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{2}{3}x=\frac{19}{9}
Reduce the fraction \frac{38}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{19}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{19+1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{20}{9}
Add \frac{19}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{20}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{20}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{2\sqrt{5}}{3} x+\frac{1}{3}=-\frac{2\sqrt{5}}{3}
Simplify.
x=\frac{2\sqrt{5}-1}{3} x=\frac{-2\sqrt{5}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.