Evaluate
\frac{182}{95}\approx 1.915789474
Factor
\frac{2 \cdot 7 \cdot 13}{5 \cdot 19} = 1\frac{87}{95} = 1.9157894736842105
Share
Copied to clipboard
\frac{2\left(\frac{15}{5}-\frac{2}{5}\right)}{2+\frac{2}{2+\frac{2}{2+\frac{1}{2}}}}
Convert 3 to fraction \frac{15}{5}.
\frac{2\times \frac{15-2}{5}}{2+\frac{2}{2+\frac{2}{2+\frac{1}{2}}}}
Since \frac{15}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{2\times \frac{13}{5}}{2+\frac{2}{2+\frac{2}{2+\frac{1}{2}}}}
Subtract 2 from 15 to get 13.
\frac{\frac{2\times 13}{5}}{2+\frac{2}{2+\frac{2}{2+\frac{1}{2}}}}
Express 2\times \frac{13}{5} as a single fraction.
\frac{\frac{26}{5}}{2+\frac{2}{2+\frac{2}{2+\frac{1}{2}}}}
Multiply 2 and 13 to get 26.
\frac{\frac{26}{5}}{2+\frac{2}{2+\frac{2}{\frac{4}{2}+\frac{1}{2}}}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{26}{5}}{2+\frac{2}{2+\frac{2}{\frac{4+1}{2}}}}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{26}{5}}{2+\frac{2}{2+\frac{2}{\frac{5}{2}}}}
Add 4 and 1 to get 5.
\frac{\frac{26}{5}}{2+\frac{2}{2+2\times \frac{2}{5}}}
Divide 2 by \frac{5}{2} by multiplying 2 by the reciprocal of \frac{5}{2}.
\frac{\frac{26}{5}}{2+\frac{2}{2+\frac{2\times 2}{5}}}
Express 2\times \frac{2}{5} as a single fraction.
\frac{\frac{26}{5}}{2+\frac{2}{2+\frac{4}{5}}}
Multiply 2 and 2 to get 4.
\frac{\frac{26}{5}}{2+\frac{2}{\frac{10}{5}+\frac{4}{5}}}
Convert 2 to fraction \frac{10}{5}.
\frac{\frac{26}{5}}{2+\frac{2}{\frac{10+4}{5}}}
Since \frac{10}{5} and \frac{4}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{26}{5}}{2+\frac{2}{\frac{14}{5}}}
Add 10 and 4 to get 14.
\frac{\frac{26}{5}}{2+2\times \frac{5}{14}}
Divide 2 by \frac{14}{5} by multiplying 2 by the reciprocal of \frac{14}{5}.
\frac{\frac{26}{5}}{2+\frac{2\times 5}{14}}
Express 2\times \frac{5}{14} as a single fraction.
\frac{\frac{26}{5}}{2+\frac{10}{14}}
Multiply 2 and 5 to get 10.
\frac{\frac{26}{5}}{2+\frac{5}{7}}
Reduce the fraction \frac{10}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{26}{5}}{\frac{14}{7}+\frac{5}{7}}
Convert 2 to fraction \frac{14}{7}.
\frac{\frac{26}{5}}{\frac{14+5}{7}}
Since \frac{14}{7} and \frac{5}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{26}{5}}{\frac{19}{7}}
Add 14 and 5 to get 19.
\frac{26}{5}\times \frac{7}{19}
Divide \frac{26}{5} by \frac{19}{7} by multiplying \frac{26}{5} by the reciprocal of \frac{19}{7}.
\frac{26\times 7}{5\times 19}
Multiply \frac{26}{5} times \frac{7}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{182}{95}
Do the multiplications in the fraction \frac{26\times 7}{5\times 19}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}