Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 8\left(3-\sqrt{5}\right)}{2+\sqrt{5}}
Add 3 and 5 to get 8.
\frac{16\left(3-\sqrt{5}\right)}{2+\sqrt{5}}
Multiply 2 and 8 to get 16.
\frac{16\left(3-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}
Rationalize the denominator of \frac{16\left(3-\sqrt{5}\right)}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
\frac{16\left(3-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16\left(3-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}
Square 2. Square \sqrt{5}.
\frac{16\left(3-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}
Subtract 5 from 4 to get -1.
-16\left(3-\sqrt{5}\right)\left(2-\sqrt{5}\right)
Anything divided by -1 gives its opposite.
-\left(48-16\sqrt{5}\right)\left(2-\sqrt{5}\right)
Use the distributive property to multiply 16 by 3-\sqrt{5}.
-\left(96-48\sqrt{5}-32\sqrt{5}+16\left(\sqrt{5}\right)^{2}\right)
Apply the distributive property by multiplying each term of 48-16\sqrt{5} by each term of 2-\sqrt{5}.
-\left(96-80\sqrt{5}+16\left(\sqrt{5}\right)^{2}\right)
Combine -48\sqrt{5} and -32\sqrt{5} to get -80\sqrt{5}.
-\left(96-80\sqrt{5}+16\times 5\right)
The square of \sqrt{5} is 5.
-\left(96-80\sqrt{5}+80\right)
Multiply 16 and 5 to get 80.
-\left(176-80\sqrt{5}\right)
Add 96 and 80 to get 176.
-176-\left(-80\sqrt{5}\right)
To find the opposite of 176-80\sqrt{5}, find the opposite of each term.
-176+80\sqrt{5}
The opposite of -80\sqrt{5} is 80\sqrt{5}.