Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2\left(\sqrt{6}+\sqrt{2}\right)}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2}
Use the distributive property to multiply 2 by \sqrt{6}+\sqrt{2}.
\frac{2\sqrt{6}\sqrt{2}+2\left(\sqrt{2}\right)^{2}}{2}
Use the distributive property to multiply 2\sqrt{6}+2\sqrt{2} by \sqrt{2}.
\frac{2\sqrt{2}\sqrt{3}\sqrt{2}+2\left(\sqrt{2}\right)^{2}}{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\times 2\sqrt{3}+2\left(\sqrt{2}\right)^{2}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{3}+2\left(\sqrt{2}\right)^{2}}{2}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{3}+2\times 2}{2}
The square of \sqrt{2} is 2.
\frac{4\sqrt{3}+4}{2}
Multiply 2 and 2 to get 4.