Evaluate
5\sqrt{3}+6\sqrt{2}\approx 17.145535412
Factor
5 \sqrt{3} + 6 \sqrt{2} = 17.145535412
Share
Copied to clipboard
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{\left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right)}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Rationalize the denominator of \frac{2\left(\sqrt{3}+\sqrt{2}\right)}{4-\sqrt{6}} by multiplying numerator and denominator by 4+\sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{4^{2}-\left(\sqrt{6}\right)^{2}}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Consider \left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{16-6}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Square 4. Square \sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Subtract 6 from 16 to get 10.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{\left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right)}
Rationalize the denominator of \frac{9-\sqrt{6}}{4-\sqrt{6}} by multiplying numerator and denominator by 4+\sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{4^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{16-6}
Square 4. Square \sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{10}
Subtract 6 from 16 to get 10.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{10\times 10}
Multiply \frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10} times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{6}+4\right)\left(\sqrt{6}+4\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Cancel out 2 in both numerator and denominator.
\frac{\left(\sqrt{6}+4\right)^{2}\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Multiply \sqrt{6}+4 and \sqrt{6}+4 to get \left(\sqrt{6}+4\right)^{2}.
\frac{\left(\left(\sqrt{6}\right)^{2}+8\sqrt{6}+16\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+4\right)^{2}.
\frac{\left(6+8\sqrt{6}+16\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
The square of \sqrt{6} is 6.
\frac{\left(22+8\sqrt{6}\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Add 6 and 16 to get 22.
\frac{\left(22+8\sqrt{6}\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Multiply 5 and 10 to get 50.
\frac{\left(-22\sqrt{6}+198-8\left(\sqrt{6}\right)^{2}+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Apply the distributive property by multiplying each term of 22+8\sqrt{6} by each term of -\sqrt{6}+9.
\frac{\left(-22\sqrt{6}+198-8\times 6+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
The square of \sqrt{6} is 6.
\frac{\left(-22\sqrt{6}+198-48+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Multiply -8 and 6 to get -48.
\frac{\left(-22\sqrt{6}+150+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Subtract 48 from 198 to get 150.
\frac{\left(50\sqrt{6}+150\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Combine -22\sqrt{6} and 72\sqrt{6} to get 50\sqrt{6}.
\frac{50\sqrt{6}\sqrt{2}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Apply the distributive property by multiplying each term of 50\sqrt{6}+150 by each term of \sqrt{2}+\sqrt{3}.
\frac{50\sqrt{2}\sqrt{3}\sqrt{2}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{50\times 2\sqrt{3}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{100\sqrt{3}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Multiply 50 and 2 to get 100.
\frac{100\sqrt{3}+50\sqrt{3}\sqrt{2}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{100\sqrt{3}+50\times 3\sqrt{2}+150\sqrt{2}+150\sqrt{3}}{50}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{100\sqrt{3}+150\sqrt{2}+150\sqrt{2}+150\sqrt{3}}{50}
Multiply 50 and 3 to get 150.
\frac{100\sqrt{3}+300\sqrt{2}+150\sqrt{3}}{50}
Combine 150\sqrt{2} and 150\sqrt{2} to get 300\sqrt{2}.
\frac{250\sqrt{3}+300\sqrt{2}}{50}
Combine 100\sqrt{3} and 150\sqrt{3} to get 250\sqrt{3}.
5\sqrt{3}+6\sqrt{2}
Divide each term of 250\sqrt{3}+300\sqrt{2} by 50 to get 5\sqrt{3}+6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}