Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(4z+4\right)\times 2+4\left(z-1\right)\left(z+1\right)\left(-\frac{5}{4}\right)=\left(4z-4\right)\left(-1\right)
Variable z cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(z-1\right)\left(z+1\right), the least common multiple of z-1,4,z+1.
8z+8+4\left(z-1\right)\left(z+1\right)\left(-\frac{5}{4}\right)=\left(4z-4\right)\left(-1\right)
Use the distributive property to multiply 4z+4 by 2.
8z+8-5\left(z-1\right)\left(z+1\right)=\left(4z-4\right)\left(-1\right)
Multiply 4 and -\frac{5}{4} to get -5.
8z+8+\left(-5z+5\right)\left(z+1\right)=\left(4z-4\right)\left(-1\right)
Use the distributive property to multiply -5 by z-1.
8z+8-5z^{2}+5=\left(4z-4\right)\left(-1\right)
Use the distributive property to multiply -5z+5 by z+1 and combine like terms.
8z+13-5z^{2}=\left(4z-4\right)\left(-1\right)
Add 8 and 5 to get 13.
8z+13-5z^{2}=-4z+4
Use the distributive property to multiply 4z-4 by -1.
8z+13-5z^{2}+4z=4
Add 4z to both sides.
12z+13-5z^{2}=4
Combine 8z and 4z to get 12z.
12z+13-5z^{2}-4=0
Subtract 4 from both sides.
12z+9-5z^{2}=0
Subtract 4 from 13 to get 9.
-5z^{2}+12z+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-12±\sqrt{12^{2}-4\left(-5\right)\times 9}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 12 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-12±\sqrt{144-4\left(-5\right)\times 9}}{2\left(-5\right)}
Square 12.
z=\frac{-12±\sqrt{144+20\times 9}}{2\left(-5\right)}
Multiply -4 times -5.
z=\frac{-12±\sqrt{144+180}}{2\left(-5\right)}
Multiply 20 times 9.
z=\frac{-12±\sqrt{324}}{2\left(-5\right)}
Add 144 to 180.
z=\frac{-12±18}{2\left(-5\right)}
Take the square root of 324.
z=\frac{-12±18}{-10}
Multiply 2 times -5.
z=\frac{6}{-10}
Now solve the equation z=\frac{-12±18}{-10} when ± is plus. Add -12 to 18.
z=-\frac{3}{5}
Reduce the fraction \frac{6}{-10} to lowest terms by extracting and canceling out 2.
z=-\frac{30}{-10}
Now solve the equation z=\frac{-12±18}{-10} when ± is minus. Subtract 18 from -12.
z=3
Divide -30 by -10.
z=-\frac{3}{5} z=3
The equation is now solved.
\left(4z+4\right)\times 2+4\left(z-1\right)\left(z+1\right)\left(-\frac{5}{4}\right)=\left(4z-4\right)\left(-1\right)
Variable z cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(z-1\right)\left(z+1\right), the least common multiple of z-1,4,z+1.
8z+8+4\left(z-1\right)\left(z+1\right)\left(-\frac{5}{4}\right)=\left(4z-4\right)\left(-1\right)
Use the distributive property to multiply 4z+4 by 2.
8z+8-5\left(z-1\right)\left(z+1\right)=\left(4z-4\right)\left(-1\right)
Multiply 4 and -\frac{5}{4} to get -5.
8z+8+\left(-5z+5\right)\left(z+1\right)=\left(4z-4\right)\left(-1\right)
Use the distributive property to multiply -5 by z-1.
8z+8-5z^{2}+5=\left(4z-4\right)\left(-1\right)
Use the distributive property to multiply -5z+5 by z+1 and combine like terms.
8z+13-5z^{2}=\left(4z-4\right)\left(-1\right)
Add 8 and 5 to get 13.
8z+13-5z^{2}=-4z+4
Use the distributive property to multiply 4z-4 by -1.
8z+13-5z^{2}+4z=4
Add 4z to both sides.
12z+13-5z^{2}=4
Combine 8z and 4z to get 12z.
12z-5z^{2}=4-13
Subtract 13 from both sides.
12z-5z^{2}=-9
Subtract 13 from 4 to get -9.
-5z^{2}+12z=-9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5z^{2}+12z}{-5}=-\frac{9}{-5}
Divide both sides by -5.
z^{2}+\frac{12}{-5}z=-\frac{9}{-5}
Dividing by -5 undoes the multiplication by -5.
z^{2}-\frac{12}{5}z=-\frac{9}{-5}
Divide 12 by -5.
z^{2}-\frac{12}{5}z=\frac{9}{5}
Divide -9 by -5.
z^{2}-\frac{12}{5}z+\left(-\frac{6}{5}\right)^{2}=\frac{9}{5}+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{12}{5}z+\frac{36}{25}=\frac{9}{5}+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{12}{5}z+\frac{36}{25}=\frac{81}{25}
Add \frac{9}{5} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{6}{5}\right)^{2}=\frac{81}{25}
Factor z^{2}-\frac{12}{5}z+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{6}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Take the square root of both sides of the equation.
z-\frac{6}{5}=\frac{9}{5} z-\frac{6}{5}=-\frac{9}{5}
Simplify.
z=3 z=-\frac{3}{5}
Add \frac{6}{5} to both sides of the equation.