Solve for y (complex solution)
y=6+\frac{9}{x}
x\neq 3\text{ and }x\neq -3\text{ and }x\neq 0
Solve for x
x=-\frac{9}{6-y}
y\neq 9\text{ and }y\neq 6\text{ and }y\neq 3
Solve for y
y=6+\frac{9}{x}
x\neq 0\text{ and }|x|\neq 3
Graph
Share
Copied to clipboard
x\left(x+3\right)\times 2-x\left(x+y\right)-\left(x^{2}-9\right)=0
Multiply both sides of the equation by x\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x^{2}-9,x.
\left(x^{2}+3x\right)\times 2-x\left(x+y\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x by x+3.
2x^{2}+6x-x\left(x+y\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x^{2}+3x by 2.
2x^{2}+6x-\left(x^{2}+xy\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x by x+y.
2x^{2}+6x-x^{2}-xy-\left(x^{2}-9\right)=0
To find the opposite of x^{2}+xy, find the opposite of each term.
x^{2}+6x-xy-\left(x^{2}-9\right)=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+6x-xy-x^{2}+9=0
To find the opposite of x^{2}-9, find the opposite of each term.
6x-xy+9=0
Combine x^{2} and -x^{2} to get 0.
-xy+9=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-xy=-6x-9
Subtract 9 from both sides.
\left(-x\right)y=-6x-9
The equation is in standard form.
\frac{\left(-x\right)y}{-x}=\frac{-6x-9}{-x}
Divide both sides by -x.
y=\frac{-6x-9}{-x}
Dividing by -x undoes the multiplication by -x.
y=6+\frac{9}{x}
Divide -9-6x by -x.
x\left(x+3\right)\times 2-x\left(x+y\right)-\left(x^{2}-9\right)=0
Variable x cannot be equal to any of the values -3,0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x^{2}-9,x.
\left(x^{2}+3x\right)\times 2-x\left(x+y\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x by x+3.
2x^{2}+6x-x\left(x+y\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x^{2}+3x by 2.
2x^{2}+6x-\left(x^{2}+xy\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x by x+y.
2x^{2}+6x-x^{2}-xy-\left(x^{2}-9\right)=0
To find the opposite of x^{2}+xy, find the opposite of each term.
x^{2}+6x-xy-\left(x^{2}-9\right)=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+6x-xy-x^{2}+9=0
To find the opposite of x^{2}-9, find the opposite of each term.
6x-xy+9=0
Combine x^{2} and -x^{2} to get 0.
6x-xy=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\left(6-y\right)x=-9
Combine all terms containing x.
\frac{\left(6-y\right)x}{6-y}=-\frac{9}{6-y}
Divide both sides by 6-y.
x=-\frac{9}{6-y}
Dividing by 6-y undoes the multiplication by 6-y.
x=-\frac{9}{6-y}\text{, }x\neq -3\text{ and }x\neq 3\text{ and }x\neq 0
Variable x cannot be equal to any of the values -3,3,0.
x\left(x+3\right)\times 2-x\left(x+y\right)-\left(x^{2}-9\right)=0
Multiply both sides of the equation by x\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x^{2}-9,x.
\left(x^{2}+3x\right)\times 2-x\left(x+y\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x by x+3.
2x^{2}+6x-x\left(x+y\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x^{2}+3x by 2.
2x^{2}+6x-\left(x^{2}+xy\right)-\left(x^{2}-9\right)=0
Use the distributive property to multiply x by x+y.
2x^{2}+6x-x^{2}-xy-\left(x^{2}-9\right)=0
To find the opposite of x^{2}+xy, find the opposite of each term.
x^{2}+6x-xy-\left(x^{2}-9\right)=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+6x-xy-x^{2}+9=0
To find the opposite of x^{2}-9, find the opposite of each term.
6x-xy+9=0
Combine x^{2} and -x^{2} to get 0.
-xy+9=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-xy=-6x-9
Subtract 9 from both sides.
\left(-x\right)y=-6x-9
The equation is in standard form.
\frac{\left(-x\right)y}{-x}=\frac{-6x-9}{-x}
Divide both sides by -x.
y=\frac{-6x-9}{-x}
Dividing by -x undoes the multiplication by -x.
y=6+\frac{9}{x}
Divide -9-6x by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}