Solve for x
x=\frac{2\left(2y+1\right)}{y+2}
y\neq 1\text{ and }y\neq -2
Solve for y
y=-\frac{2\left(1-x\right)}{4-x}
x\neq 2\text{ and }x\neq 4
Graph
Share
Copied to clipboard
\left(y-1\right)\times 2-\left(x-2\right)\times 3=\left(x-2\right)\left(y-1\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(y-1\right), the least common multiple of x-2,y-1.
2y-2-\left(x-2\right)\times 3=\left(x-2\right)\left(y-1\right)
Use the distributive property to multiply y-1 by 2.
2y-2-\left(3x-6\right)=\left(x-2\right)\left(y-1\right)
Use the distributive property to multiply x-2 by 3.
2y-2-3x+6=\left(x-2\right)\left(y-1\right)
To find the opposite of 3x-6, find the opposite of each term.
2y+4-3x=\left(x-2\right)\left(y-1\right)
Add -2 and 6 to get 4.
2y+4-3x=xy-x-2y+2
Use the distributive property to multiply x-2 by y-1.
2y+4-3x-xy=-x-2y+2
Subtract xy from both sides.
2y+4-3x-xy+x=-2y+2
Add x to both sides.
2y+4-2x-xy=-2y+2
Combine -3x and x to get -2x.
4-2x-xy=-2y+2-2y
Subtract 2y from both sides.
4-2x-xy=-4y+2
Combine -2y and -2y to get -4y.
-2x-xy=-4y+2-4
Subtract 4 from both sides.
-2x-xy=-4y-2
Subtract 4 from 2 to get -2.
\left(-2-y\right)x=-4y-2
Combine all terms containing x.
\left(-y-2\right)x=-4y-2
The equation is in standard form.
\frac{\left(-y-2\right)x}{-y-2}=\frac{-4y-2}{-y-2}
Divide both sides by -y-2.
x=\frac{-4y-2}{-y-2}
Dividing by -y-2 undoes the multiplication by -y-2.
x=\frac{2\left(2y+1\right)}{y+2}
Divide -4y-2 by -y-2.
x=\frac{2\left(2y+1\right)}{y+2}\text{, }x\neq 2
Variable x cannot be equal to 2.
\left(y-1\right)\times 2-\left(x-2\right)\times 3=\left(x-2\right)\left(y-1\right)
Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(y-1\right), the least common multiple of x-2,y-1.
2y-2-\left(x-2\right)\times 3=\left(x-2\right)\left(y-1\right)
Use the distributive property to multiply y-1 by 2.
2y-2-\left(3x-6\right)=\left(x-2\right)\left(y-1\right)
Use the distributive property to multiply x-2 by 3.
2y-2-3x+6=\left(x-2\right)\left(y-1\right)
To find the opposite of 3x-6, find the opposite of each term.
2y+4-3x=\left(x-2\right)\left(y-1\right)
Add -2 and 6 to get 4.
2y+4-3x=xy-x-2y+2
Use the distributive property to multiply x-2 by y-1.
2y+4-3x-xy=-x-2y+2
Subtract xy from both sides.
2y+4-3x-xy+2y=-x+2
Add 2y to both sides.
4y+4-3x-xy=-x+2
Combine 2y and 2y to get 4y.
4y-3x-xy=-x+2-4
Subtract 4 from both sides.
4y-3x-xy=-x-2
Subtract 4 from 2 to get -2.
4y-xy=-x-2+3x
Add 3x to both sides.
4y-xy=2x-2
Combine -x and 3x to get 2x.
\left(4-x\right)y=2x-2
Combine all terms containing y.
\frac{\left(4-x\right)y}{4-x}=\frac{2x-2}{4-x}
Divide both sides by -x+4.
y=\frac{2x-2}{4-x}
Dividing by -x+4 undoes the multiplication by -x+4.
y=\frac{2\left(x-1\right)}{4-x}
Divide -2+2x by -x+4.
y=\frac{2\left(x-1\right)}{4-x}\text{, }y\neq 1
Variable y cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}