Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{\left(2x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x^{2}+2x+4 is \left(x-2\right)\left(x^{2}+2x+4\right). Multiply \frac{2}{x-2} times \frac{x^{2}+2x+4}{x^{2}+2x+4}. Multiply \frac{2x+3}{x^{2}+2x+4} times \frac{x-2}{x-2}.
\frac{2\left(x^{2}+2x+4\right)+\left(2x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
Since \frac{2\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{\left(2x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+4x+8+2x^{2}-4x+3x-6}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
Do the multiplications in 2\left(x^{2}+2x+4\right)+\left(2x+3\right)\left(x-2\right).
\frac{4x^{2}+3x+2}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
Combine like terms in 2x^{2}+4x+8+2x^{2}-4x+3x-6.
\frac{4x^{2}+3x+2}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor x^{3}-8.
\frac{4x^{2}+3x+2-\left(6x+12\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Since \frac{4x^{2}+3x+2}{\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{6x+12}{\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+3x+2-6x-12}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Do the multiplications in 4x^{2}+3x+2-\left(6x+12\right).
\frac{4x^{2}-3x-10}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Combine like terms in 4x^{2}+3x+2-6x-12.
\frac{\left(x-2\right)\left(4x+5\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor the expressions that are not already factored in \frac{4x^{2}-3x-10}{\left(x-2\right)\left(x^{2}+2x+4\right)}.
\frac{4x+5}{x^{2}+2x+4}
Cancel out x-2 in both numerator and denominator.
\frac{2\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{\left(2x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x^{2}+2x+4 is \left(x-2\right)\left(x^{2}+2x+4\right). Multiply \frac{2}{x-2} times \frac{x^{2}+2x+4}{x^{2}+2x+4}. Multiply \frac{2x+3}{x^{2}+2x+4} times \frac{x-2}{x-2}.
\frac{2\left(x^{2}+2x+4\right)+\left(2x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
Since \frac{2\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{\left(2x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+4x+8+2x^{2}-4x+3x-6}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
Do the multiplications in 2\left(x^{2}+2x+4\right)+\left(2x+3\right)\left(x-2\right).
\frac{4x^{2}+3x+2}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{x^{3}-8}
Combine like terms in 2x^{2}+4x+8+2x^{2}-4x+3x-6.
\frac{4x^{2}+3x+2}{\left(x-2\right)\left(x^{2}+2x+4\right)}-\frac{6x+12}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor x^{3}-8.
\frac{4x^{2}+3x+2-\left(6x+12\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Since \frac{4x^{2}+3x+2}{\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{6x+12}{\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+3x+2-6x-12}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Do the multiplications in 4x^{2}+3x+2-\left(6x+12\right).
\frac{4x^{2}-3x-10}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Combine like terms in 4x^{2}+3x+2-6x-12.
\frac{\left(x-2\right)\left(4x+5\right)}{\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor the expressions that are not already factored in \frac{4x^{2}-3x-10}{\left(x-2\right)\left(x^{2}+2x+4\right)}.
\frac{4x+5}{x^{2}+2x+4}
Cancel out x-2 in both numerator and denominator.