Solve for x
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
\left(2x-3\right)\times 2=\left(x-1\right)\times 9
Variable x cannot be equal to any of the values 1,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(2x-3\right), the least common multiple of x-1,2x-3.
4x-6=\left(x-1\right)\times 9
Use the distributive property to multiply 2x-3 by 2.
4x-6=9x-9
Use the distributive property to multiply x-1 by 9.
4x-6-9x=-9
Subtract 9x from both sides.
-5x-6=-9
Combine 4x and -9x to get -5x.
-5x=-9+6
Add 6 to both sides.
-5x=-3
Add -9 and 6 to get -3.
x=\frac{-3}{-5}
Divide both sides by -5.
x=\frac{3}{5}
Fraction \frac{-3}{-5} can be simplified to \frac{3}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}