Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
2-\left(x-1\right)=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2-x-\left(-1\right)=x
To find the opposite of x-1, find the opposite of each term.
2-x+1=x
The opposite of -1 is 1.
3-x=x
Add 2 and 1 to get 3.
3-x-x=0
Subtract x from both sides.
3-2x=0
Combine -x and -x to get -2x.
-2x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-3}{-2}
Divide both sides by -2.
x=\frac{3}{2}
Fraction \frac{-3}{-2} can be simplified to \frac{3}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}