Solve for x
x=\frac{14}{15}\approx 0.933333333
Graph
Share
Copied to clipboard
7\times 2+7x\left(-\frac{8}{7}\right)=7x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7x, the least common multiple of x,7.
14+7x\left(-\frac{8}{7}\right)=7x
Multiply 7 and 2 to get 14.
14-8x=7x
Cancel out 7 and 7.
14-8x-7x=0
Subtract 7x from both sides.
14-15x=0
Combine -8x and -7x to get -15x.
-15x=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-14}{-15}
Divide both sides by -15.
x=\frac{14}{15}
Fraction \frac{-14}{-15} can be simplified to \frac{14}{15} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}